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Abstract Seeking analytical solutions of nonlinear

Schrödinger (NLS)-like equations remains an open

topic. In this paper, we revisit the general inhomoge-

neous nonautonomous NLS (inNLS) equation and

report on exact similaritons under generic constraint

relationships by proposing a novel generic self-similar

transformation, which implies that there exist a rich

variety of highly controllable solution families for

inhomogeneous systems. As typical examples, richly

controllable behaviors of the self-similar soliton (SS),

self-similar Akhmediev breather (SAB), self-similar

Ma breather (SMB), and self-similar rogue wave

(SRW) are presented in a periodic distribution

nonlinear system. With the aid of a linear transforma-

tion, these novel similariton solutions are deployed as

a basis for constructing two-component composite

solutions to a pair of coherently coupled inNLS

equations including four-wave mixing. The diverse

composite waves that emerge, including SS–SS,

SAB–SMB, and SRW–SRW families, are investigated

in some detail. The family of similariton solutions

presented here may prove significance for designing

the control and transmission of nonlinear waves.
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1 Introduction

Similaritons in amplifying nonlinear graded-index

waveguides can be realized under much less compat-

ibility condition by controlling the power of Raman

gain to match the parameters of the waveguides [1].

This line of work has been extended in various ways to

nonautonomous systems [2, 3]. Similar results have

also been obtained for matter waves in trapped or anti-

trapped Bose–Einstein condensates (BECs) with time-

modulated atomic interactions [4]. The transmission

of nonlinear waves in inhomogeneous waveguide

systems is well described by an inhomogeneous

nonautonomous nonlinear Schrödinger (inNLS) equa-

tion [5, 6]. Many works have been devoted to finding
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solution constructions of inNLS-like equations with

recourse to methods such as Darboux transformations

and Lax pairs [7–9], Hirota bilinearizations [10], and

self-similar transformations [10–14]. To date, some

important self-similar soliton solutions have been

obtained under special balance conditions between

gain/loss, dispersion and nonlinearity [5–20]. Moti-

vated by these works, it is natural to pose two key

questions: (i) Are there other self-similar solutions of

inNLS-like equations that have not yet been found? (ii)

Do there exist families of solutions that can describe

the dynamics of solitons and/or similaritons for

various inhomogeneous systems? In this paper, a

series of exact similariton solutions of an inNLS

equation with external potentials will be sought by

introducing a generic self-similar transformation and a

generic constraint relationship between gain/loss,

dispersion and nonlinearity. The arbitrary nature of

the parameters and the introduction of a matching

function representing residual gain/loss can be

expected to give rise to similariton solutions with a

diverse range of forms.

In more sophisticated geometries, coupled NLS/

inNLS equations can model physical processes that

support multiple or multi-component nonlinear waves

[16–21]. For instance, Manikandan et al. [16] inves-

tigated the manipulation of vector localized matter

waves in multi-component Bose–Einstein condensates

by transforming coupled inNLS equations into con-

stant-coefficient NLS equations. Babu Mareeswaran

et al. [17] analyzed superposed nonlinear waves of

coherently coupled inNLS equations in systems with

periodic and kink-like nonlinearity distributions. More

recently, Jia et al. [18] have investigated coherently

coupled inNLS equations through three kinds of

similarity transformations, demonstrating energy

exchange and the existence of a wide selection of

composite waves in homogeneous/inhomogeneous

optical fiber systems. Also of particular note is the

work of Ding et al. [7], who presented breathers and

rogue waves for coupled inNLS equations with the aid

of Darboux transformations in the context of inhomo-

geneous plasmas.

Here, we will use a linear transformation of

envelopes to help identify families of similaritons that

satisfy the inNLS equation. Those single-component

solutions can then be mapped onto two-component

solutions for a pair of coherently coupled inNLS

equations. Subsequent analysis will focus on the

propagation and control of various composite waves

in inhomogeneous coupled systems.

The significance of the results presented in this

work is threefold:

(i) A family of exact similariton solutions for an

inNLS equation involving external potentials

is presented by proposing introducing a

generic self-similar transformation with a

generic constraint relationship among gain/

loss, dispersion and nonlinearity.

(ii) The generic constraints imply that there

always exist exact similaritons with quite

different forms in inhomogeneous fibers even

if gain/loss, dispersion and nonlinearity are

not precisely balanced. As illustrative exam-

ples, the control of typical similaritons in

inhomogeneous systems will be

demonstrated.

(iii) The family of similaritons can also be

applied, via a linear transformation, to coher-

ently coupled inNLS equations. The implica-

tion is that there must also exist

corresponding series of composite self-simi-

lar waves in inhomogeneous coupled

systems.

The analysis presented in this paper is organized as

follows. In Sect. 2, we derive a family of exact

similariton solutions of an inNLS equation with

external potentials by proposing a novel generic self-

similar transformation. The dynamics of those new

solutions is demonstrated in Sect. 3, where we

consider the propagation in a range of inhomogeneous

nonlinear fibers. In Sect. 4, we use a linear transfor-

mation to decouple a pair of inNLS equations includ-

ing four-wave mixing terms into two identical inNLS

equations. Utilizing the family of similaritons solu-

tions (obtained in Sect. 2), we study a broad range of

composite self-similar waves in a coherently coupled

inNLS model with periodic nonlinearity and different

residual gain/loss. We conclude, in Sect. 5, with some

discussions of our results.

2 A family of similariton solutions of inNLS

equation

Nonlinear waves such as optical solitons, rogue waves,

and matter wave solitons in homogeneous systems can
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be well described by the NLS equation [22–26]. In

realistic applications, systems are rarely homogeneous

due to long-distance transmission, manufacturing

imperfections, and the inclusion of other technological

elements (e.g., connected to soliton management and

control). It is necessary, then, to investigate how these

types of nonlinear waves arise in non-autonomous

inhomogeneous systems, and how they evolve during

interactions in the presence of external potentials. The

transmission of nonlinear waves in inhomogeneous

systems can be modeled by the following inNLS

equation [5, 6, 27, 28]:

i
ou

oz
þ dðzÞ o

2u

ot2
þ 2rðzÞ uj j2uþ ½X0ðzÞ

þ X1ðzÞt þ X2ðzÞt2�uþ iCðzÞu ¼ 0:

ð1Þ

Here, u: u(z, t) is the envelope of the electric field,

while z and t represent the longitudinal (spatial) and

time coordinates, respectively. The real functions d(z),

r(z) and C(z) describe the group-velocity dispersion,

nonlinearity, and gain (C(z)\ 0) or loss (C(z)[ 0) in

the system, respectively. The real functionX0(z),X1(z)

and X2(z) parametrize the constant, linear and

parabolic contributions, respectively. Equation (1) is

of technical interest because of its wide range of

potential applications [3–6, 13, 29, 30]. It can be used

to investigate not only the stable transmission of

optical pulses in inhomogeneous fiber or waveguide

systems, but also the amplification and management of

solitons and combined waves [10, 20, 21]. Over recent

years, some particular similariton solutions of Eq. (1)

have been found for special constraints

[12, 18, 31–36]. Here, we are interested in more

general analytical solutions of Eq. (1) under some-

what relaxed conditions. To proceed, we propose a

generic self-similar transformation

uðz; tÞ ¼ AðzÞqðZðzÞ; Tðz; tÞÞei/ðz;tÞ; ð2Þ

with

AðzÞ ¼ k1

rðzÞkr

dðzÞkd
e�gðzÞ: ð3Þ

The real functions Z(z), T(z,t), A(z) and /(z,t)

represent the effective propagation distance, self-

similar time, self-similar amplitude and self-similar

phase variables of the similariton, respectively.

Parameters k1, kd and kr are arbitrary real constants,

and g(z) quantifies the gain/loss. Equation (3) implies

that A(z) is proportional to either [r(z)/d(z)]1/2 or

[r(z)d(z)]1/2, which embodies the expectation that

growth or decay of the amplitude due to gain/loss

should be exponential along the transmission direction

z [12, 18, 32]. Inserting Eqs. (2) and (3) into Eq. (1)

and imposing the following conditions

Zz ¼ k2
1

rðzÞ2krþ1

dðzÞ2kd
e�2gðzÞ;

Tt ¼ k1rðzÞkrþ
1
2dðzÞ�kd�1

2e�gðzÞ;

ð4Þ

d2ðzÞ/ttrðzÞ � kdrðzÞdzðzÞ þ dðzÞ
½CðzÞrðzÞ � rðzÞgzðzÞ þ krrzðzÞ� ¼ 0;

ð5Þ

Tz þ 2dðzÞTtUt ¼ 0; ð6Þ

�/z � dðzÞ/2
t þ Vðz; tÞ ¼ 0; ð7Þ

where the subscripts z and t denote derivatives

with respect to those variables and V(z, t) = X0(z) ?

X1(z)t ? X2(z)t2, one can obtain the standard NLS

equation,

i
oq

oZ
þ o2q

oT2
þ 2 qj j2q ¼ 0: ð8Þ

Analyzing and solving Eqs. (4)–(7), one can find a

pair of generic compatibility conditions

CðzÞ ¼ ar
rzðzÞ
rðzÞ þ ad

dzðzÞ
dðzÞ þ appðzÞ; ð9Þ

X2ðzÞ ¼ � d

dz

frdpðzÞ
2dðzÞ

� �
þ
f 2
rdpðzÞ
dðzÞ ; ð10Þ

where ar = 1/4 - kr/2, ad = kd/2 - 1/4, g(z) = 2ap$
p(z)dz and frdp(z) = (1/2–ar)rz(z)/r(z)–(1/2 ? ad)dz(z)
/d(z)–app(z). The expressions for the self-similar

solution variables are thus in the following forms:

AðzÞ ¼ k1

rðzÞð1�4arÞ=2

dðzÞð1þ4adÞ=2
e�2ap

R
pðzÞdz; ð11Þ

ZðzÞ ¼ k2
1

Z
rðzÞ2�4ar

dðzÞ1þ4ad
e�4ap

R
pðzÞdzdz; ð12Þ
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Tðz; tÞ ¼ k1

rðzÞ1�2ar

dðzÞ1þ2ad
e�2ap

R
pðzÞdzt

� 2k1

Z
rðzÞ1�2ar

dðzÞ2ad
e�2ap

R
pðzÞdzf1ðzÞdz; ð13Þ

/ðz; tÞ ¼ � frdpðzÞ
2dðzÞ t

2 þ f1ðzÞt þ f2ðzÞ; ð14Þ

f1ðzÞ ¼
rðzÞ1�2ar

dðzÞ1þ2ad
e�2ap

R
pðzÞdz

� k2 þ
Z

X1ðzÞ
dðzÞ1þ2ad

rðzÞ1�2ar
e2ap

R
pðzÞdzdz

" #
;

ð15Þ

f2ðzÞ ¼
Z

½�dðzÞf 2
1 ðzÞ þ X0ðzÞ�dz; ð16Þ

where k2 is a constant of integration determining the

trajectory and phase of the similaritons. In compati-

bility conditions (9) and (10), ap is an arbitrary real

constant and p(z) is an arbitrary matching function

introduced to capture the residual gain/loss. The

proposed generic self-similar transformation (2), in

conjunction with Eq. (3), gives rise to generic com-

patibility conditions (9) and (10) and the set of self-

similar solution variables (11)–(14). When combining

Eq. (2) with Eqs. (11)–(16), Eq. (1) can be trans-

formed into the standard NLS Eq. (8). Hence, we have

established the connection between Eqs. (1) and (8).

All known solutions to the latter—e.g., solitons [22],

Akhmediev and Ma breathers (ABs and MBs, respec-

tively) [23], and rogue waves (RWs) [24]—can now

be mapped onto corresponding solutions of the former.

Note that compatibility conditions (9) and (10),

along with the set of self-similar variables [see

Eqs. (11)–(14)], are closely tied to the free parameters

ar, ad and ap. Since those three constants are entirely

arbitrary (including all positive and negative integers,

rational and even irrational numbers), it follows that

Eqs. (9) and (10) greatly relax the existence criteria of

similaritons because the residual gain/loss function

p(z) is itself also arbitrary. When ap = 0, they predict

an exact balance between gain/loss, dispersion and

nonlinearity. However, when ap = 0, gain/loss can-

not be completely compensated by dispersion and

nonlinearity, and a residual gain/loss p(z) survives.

Since the choice of p(z) is arbitrary, Eqs. (9) and (10)

constitute weak constraints by compensating the

unbalanced nature of dispersion, nonlinearity and

gain/loss. Compared to those reported in earlier works

[17, 18, 20, 29, 30, 32, 39–45] the introduction of

arbitrary ar, ad, ap and p(z) necessarily results in a

family of exact similariton solutions to Eq. (1) under

infinite corresponding constraint conditions, which

can take a diverse form of solutions. Especially, these

constraint conditions are easier to realize in practice

due to the introduction of free p(z). In the next section,

we will discuss the dynamic characteristics of the self-

similar soliton (SS), self-similar AB (SAB), self-

similar MB (SMB) and self-similar RW (SRW)

solutions to Eq. (1) (explicit forms are given in

Appendix A).

In accordance with Eqs. (14) and (15), the function

f1(z) represents the frequency shift of similariton (2),

and the width W(z), trajectory Tr(z), and the chirp C(z)

can also be derived from Eqs. (13) and (14) as follows:

WðzÞ ¼ dðzÞ1þ2ad

k1rðzÞ1�2ar
e2ap

R
pðzÞdz; ð17Þ

TrðzÞ ¼ 2
dðzÞ1þ2ad

rðzÞ1�2ar
e2ap

R
pðzÞdz

Z
rðzÞ2�4ar

dðzÞ1þ4ad

� k2 þ
Z

X1ðzÞ
dðzÞ1þ2ad

rðzÞ1�2ar
e2ap

R
pðzÞdzdz

" #
e�4ap

R
pðzÞdzdz;

ð18Þ

CðzÞ ¼ ar �
1

2

� �
rzðzÞ

rðzÞdðzÞ þ
1

2
þ ad

� �
dzðzÞ
d2ðzÞ

þ ap
pðzÞ
dðzÞ : ð19Þ

It is clear from inspection of Eqs. (15) and (17)–

(19) that f1(z), W(z), Tr(z) and C(z) are determined by

the dispersion d(z), nonlinearity r(z) and matching

function p(z). Moreover, the trajectory and frequency

shift are modulated by the linear external potential

X1(z). It is also worth emphasizing that the self-similar

characteristic variables along with the self-similar

transformation (2) are all associated with the free

parameters ar, ad and ap. Such connections imply that

the different values of ar, ad and ap may regulate the

amplitude, effective propagation distance, width, the

trajectory of the similaritons. Therefore, typical sim-

ilaritons such as SSs, SABs, SMBs or SRWs are all

fully controllable and configurable. In order to better

illustrate the significance of similariton solution (2),

we make six important remarks.
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Remark 1: Amplitude. The following deductions

can be obtained from Eq. (11). When ad = - 1/4, it

follows that AðzÞ ¼ k1rðzÞ1=2�2ar e�2ap
R

pðzÞdz
and

hence the amplitude of similariton (2) is not modulated

by the dispersion d(z). When ar = 1/4, one has AðzÞ ¼
k1dðzÞ�1=2�2ad e�2ap

R
pðzÞdz

and so the amplitude is

not modulated by the nonlinearity r(z). When ar =

- ad = 1/4, we have AðzÞ ¼ k1e
�2ap

R
pðzÞdz

so that the

amplitude is independent of r(z) and d(z) [i.e.,

A(z) changes exponentially with p(z)]. For the general

case ad = –1/4 or ar = 1/4, the amplitude can be

modulated in different ways even for the same d(z) or

r(z).

Remark 2: Effective distance. The following

deductions can be made from Eq. (12). When ad-

= - 1/4, one has ZðzÞ ¼ k2
1

R
rðzÞ2�4ar e�4ap

R
pðzÞdzdz

and so the effective distance is independent of d(z).

When ar = 1/2, one has ZðzÞ ¼
k2

1

R
dðzÞ�1�4ad e�4ap

R
pðzÞdzdz so that the effective

distance is independent of r(z). When ar = - 2ad-

= 1/2, one has ZðzÞ ¼ k2
1

R
e�4ap

R
pðzÞdzdz and hence

the effective distance is independent of both r(z) and

d(z) [i.e., Z(z) depends only upon ap and p(z)].

Remark 3: Width. The following deductions can be

made from Eq. (17). When ad = –1/2, one has WðzÞ ¼
rðzÞ2ar�1e2ap

R
pðzÞdz=k1 and so the width of similariton

(2) is independent of the dispersion d(z). When ar = 1/

2, one has WðzÞ ¼ dðzÞ1þ2ad e2ap
R

pðzÞdz=k1 and so the

width is independent of r(z). When ar = - ad = 1/2,

the width depends only upon related to p(z) and ap.
Furthermore, if ap = 0, the width of the similariton

remains constant while, when ad = –1/2 and ar = 1/

2, the width can be modulated by both d(z) and r(z) in

different ways (as determined by the selection of ad
and ar).

Remark 4: Trajectory. If the system has no

residual gain/loss (i.e., ap = 0), then for ar = 1/2 we

have from Eq. (18) that TrðzÞ ¼
2dðzÞ1þ2ad

R
dðzÞ�1�4ad ½k2 þ

R
X1ðzÞdðzÞ1þ2ad dz�dz.

The trajectory of similariton (2) is then independent

of r(z). When X1(z) = 0, the trajectory is always

related to the dispersion d(z) regardless of ad, which is

in agreement with the propagation features found in

Refs. [46, 47].

Remark 5: Chirp. For homogeneous system

[where d(z) = r(z) = 1 and p(z) = 0], Eq. (19) predicts

that similariton (2) is chirp-free. When ar = 1/2, one

has C(z) = (1/2 ? ad)dz(z)/d
2(z) ? app(z)/d(z) so that

the chirp of the similariton is independent of r(z). In

general, the similariton always has a chirp related to

d(z) irrespective of ad, except for the special cases of

either ar = –ad = 1/2 and ap = 0, or p(z) = (1/2 –

ar)rz(z)/[apr(z)] – (1/2 ? ad)dz(z)/[apd(z)].

Remark 6: General cases. From constraint (9),

when the dispersion and nonlinearity are subject to the

relation dðzÞad rðzÞar ¼ const:, one has C(z) = app(z)

so that the matching function is determined solely by

C(z). Without loss of generality, we may always set

const. = 1 and then deduce two special cases as

important examples. Case �: When ar = –ad [i.e.,

d(z) = r(z)], it is known from Eqs. (11) and (17) that

AðzÞ ¼ k1e
�2ap

R
pðzÞdz

and WðzÞ ¼ k�1
1 e2ap

R
pðzÞdz

.

These results mean that both the amplitude and the

width of similariton (2) are independent of r(z) and

d(z), but they are dependent on C(z). Case `: When

ar = –2ad [i.e. d(z) = r2(z)], one can obtain from

Eq. (12) that ZðzÞ ¼ k2
1

R
e�4ap

R
pðzÞdzdz which means

Z(z) varies exponentially with p(z) irrespective of

r(z) and d(z).

From the above observations, it is easy to surmise

that for an inhomogeneous system with given disper-

sion and nonlinearity, the similariton prescribed by

Eqs. (2), (3) and (12)–(16) may have distinctly

different qualitative behaviors whose amplitude,

effective propagation distance, width, trajectory and

chirp can all be controlled by choosing different ar, ad
and ap. In fact, the self-similar transformations

reported in previous papers are some special cases of

our work with particular choices of ar, ad and ap
[17, 18, 20, 29, 30, 39–45]. For example, when ap = 0,

5ad = 3ar and r5(z) = d3(z), the constraint conditions

and self-similar variables (9)–(16) can be reduced to

those studied in Ref. [11]—as shown in Appendix B

[see system (B1)]. When ap, ad and ar take on other

special values, the reduced expressions shown in

Appendix B [see systems (B2)–(B4)] are in agreement

with those in Refs. [12, 18, 33, 34]. Some special cases

of self-similar transformation (2) are listed in Table 1,

wherein ‘‘-’’ denotes that the nonlinearity or dispersion

is homogeneous, and ‘‘*’’ signifies an arbitrary real

constant. For homogeneous dispersion and nonlinear-

ity, the values of ar or ad have no effect on constraint
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condition (9) due to rz(z)/r(z) = 0 or dz(z)/d(z) = 0. For

ease of comparison, we note also that our p(z) corre-

sponds to the ratio wz(z)/w(z) in Refs. [32–34, 36].

The reported self-similar transformations listed in

Table 1 are the special cases of our current work. The

generality of similariton (2) arises from the introduc-

tion of arbitrary quantities ar, ad, ap and p(z). For

homogeneous systems with d(z) = 1/2, r(z) = 1,

C(z) = –1/2, X0(z) = X1(z) = 0 and X2(z) = 1/2, when

ar = ad = - 2ap = 1, the similariton (2) can reduce to

the similar but a little bit different with the one in Ref.

[1] due to unidentical self-similar transformations. For

inhomogeneous systems, the constraints imposed by

Eqs. (9) and (10) are easy to satisfy and the

corresponding similaritons can be diversely regulated

by choosing different values of ar, ad, ap and p(z) at

will. Without loss of generality, in the subsequent

sections, we demonstrate the dynamics of similaritons

with different free parameters in periodic nonlinear

systems.

3 Dynamics of similaritons in inhomogeneous

nonlinear systems

It has been demonstrated above that the dynamics of

similaritons can be modulated by free parameters ar,
ad and ap. For simplicity, here we investigate only the

role of ar by setting ap = 0 and considering a simple

inhomogeneous nonlinear system [18, 40]:

rðzÞ ¼ 1 þ e cos(2zÞ;dðzÞ ¼1; ð20Þ

where e is the fluctuation parameter of r(z) and we set

e = 1/2 for definiteness. Since dz(z)/d(z) = 0, ad does

not affect constraint conditions (9) and (10) or

similariton solution (2). Recall that the potential

X0(z) influences only the phase and the potential

X1(z) changes the trajectory and frequency shift

[18, 39]. Hence, in the subsequent analysis, we set

X0(z) = X1(z) = 0 and the constant k1 = 1 in order to

isolate the role of ar.
In accordance with Eqs. (9)–(12), the system

parameters U(z), X2(z) and self-similar variables

A(z) and Z(z) will take the simple forms following

from system (20):

CðzÞ ¼ �2ar sinð2zÞ=½2 þ cosð2zÞ�; ð21Þ

X2ðzÞ ¼ ð1 � 2arÞ
3 � 2ar þ 4 cosð2zÞ þ ð2ar � 1Þ cosð4zÞ

2 2 þ cosð2zÞ½ �2
;

ð22Þ

AðzÞ ¼ ½1 þ cosð2zÞ=2�1=2�2ar ; ð23Þ

ZðzÞ ¼
Z

½1 þ cosð2zÞ=2�2�4ar dz; ð24Þ

For different values of ar, the specific forms ofU(z),

X2(z), A(z) and Z(z) in Eqs. (21)–(24) evidently change

significantly. Figure 1 depicts their profiles when

ar = 1/4, 1/2 and –3/2, respectively. It can be seen

that U(z) has the same period but different amplitudes

and slopes for those choices of ar. The parabolic

potential X2(z) has the same period with different

shapes for ar = 1/4 and - 3/2, but its periodicity

vanishes for ar = 1/2. The amplitude A(z) is constant

for ar = 1/4, while for ar = 1/2 and - 3/2 it has

complementary peaks and troughs at the same fixed

period. The depth of modulation in A(z) is also much

greater for ar = - 3/2 than for ar = 1/2. Finally, the

effective propagation distance Z(z) takes periodic

oscillation, linear and step-like forms, respectively.

From the similariton solutions (given in Appendix

A), it is straightforward to find specific expressions for

the SS, SAB, SMB and SRW with ar = 1/4, 1/2, - 3/2

in inhomogeneous nonlinear system (20); evolutions

of those waves are shown in Fig. 2. When ar = 1/4 and

- 3/2, the trajectories of the SS, SMB and SRW

oscillate periodically; their peak intensities and back-

ground fields are unmodulated when ar = 1/4 [see

Table 1 Some special cases of the self-similar transformation

(2)

References ap ar ad

Refs. [20, 29, 30, 39–41] 0 0 0

Refs. [15–17, 32, 42–45] 0 0 –

Ref. [11] 0 ar 0.6ar
Ref. [18] 0 0 - 1/2

Ref. [18] 0 1/2 - 1

Refs. [12, 18] 0 1/2 - 1/2

Ref. [35] 0 1/4 –

Ref. [32] 1/2 1/2 - 1/2

Ref. [36] 1/2 1/2 –

Refs [33, 34] 1/2 – –

This work * * *
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Fig. 2a1–d1] but they exhibit periodic oscillations

when ar = - 3/2 [see Fig. 2a3–d3]. The SS is an

exception since its background field is necessarily zero

[see Fig. 2a3], as predicted by Eqs. (23), (17) and (18).

When ar = 1/2, the intensities and backgrounds of the

similaritons oscillate periodically except for the

background of the SS, and due to Tr(z) = 2k2z, their

trajectories vary linearly in the (z,t) plane [see

Fig. 2a2–d2]. It is worth noting that when ar = - 3/

2, a very high-intensity pulse train and pulse can be

generated [see Fig. 2b3–d3].

According to Eq. (18), the trajectories of the

similaritons are prescribed by Tr(z) = 2k2[1 ?

ecos(2z)]–1/2[z ? esin(2z)/2], 2k2z and 2k2-

[1 ? ecos(2z)]–4$[1 ? ecos(2z)]8dz, when ar = 1/4,

1/2 and –3/2. It follows that the peaks of the SS,

SAB, SMB and SRW are tilted when ar = 1/2 and

skewed when ar = 1/4, –3/2 [where the trajectories

may be linear or curved in the (z,t) plane,

respectively].

It is worth reemphasizing that the similariton

properties discussed above are strictly for ap = 0.

For ap = 0, Eqs. (9)–(16) predict that the residual

gain/loss p(z) is not only related to the constraint

conditions, but it also affects the similariton param-

eters. In order to explore the role of p(z), here we set

e = 0 in system (20) [i.e., so that r(z) = 1 = d(z)].

Thereafter, the parabolic potential X2(z), the self-

similar amplitude A(z) and the effective propagation

distance Z(z) take the forms of: X2(z) = ap[pz(z) ?
2app

2(z)]/2, A(z) = exp(–2ap$p(z)dz) and Z(z) = $[
exp(–4ap$p(z)dz)]dz. These functions evidently

depend strongly upon p(z). Figure 3 shows the profiles

of X2(z), A(z) and Z(z) for periodic p(z) = –rpqp-

sin(qpz)/[1 ? rpcos(qpz)] [27] and linear p(z) = ep-

z [7], respectively, where it can be seen that X2(z),

A(z) and Z(z) have very different profiles for these two

choices. For periodic p(z), the functions X2(z),

A(z) and Z(z) all have the same period as that of

p(z) [see Fig. 3a]; for linear p(z), we find X2(z) has a

parabolic profile, A(z) goes to zero at z ? ± ?, and

Z(z) is of kink form [see Fig. 3b]. These results

demonstrate that p(z), when unbalanced by the non-

linearity and dispersion, not only relaxes the existence

conditions for similaritons but it can also control the

amplitude and evolution of such waves.

Evolution of the SS, SAB, SMB and SRW for the

periodic and linear p(z) is presented in Fig. 4. In the

periodic case [see Fig. 4a1–d1], all four solutions either

oscillate periodically or repeat along the propagation

direction due to the form of the function.

The periodic nature of the SS [see Fig. 4a1] is

different from that shown in Fig. 2a2 and a3, the peaks

of the SAB are temporally ‘bent’ to two sides [see

Fig. 4b1], and the SMB and SRW appear, respectively,

as a spatially localized three-hump [see Fig. 4c1] and

double-hump waves [see Fig. 4d1]. In the linear case,

the evolution of the SS and SMB [see Fig. 4a2 and c2,

Fig. 1 The profiles of a U(z), b X2(z), c A(z) and d Z(z) for ar = 1/4, 1/2 and –3/2 in inhomogeneous nonlinear system (20)

ZðzÞ ¼ k2
1

22 arctan½tanðz=2Þ=
ffiffiffi
3

p
�

27
ffiffiffi
3

p � sinðzÞ
9½2 þ cosðzÞ�3

� 5 sinðzÞ
27½2 þ cosðzÞ�2

� 8 sinðzÞ
27½2 þ cosðzÞ�

 !
:
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respectively] is spatially localized on a zero-back-

ground due to A(z) = exp(–apepz
2); they are qualita-

tively different from the solutions shown in Fig. 2a and

c, and also from those appearing in the literature

[6, 20]. Finally, the SAB retains spatial localization,

while the SRW exhibits both spatial and temporal

Fig. 2 Evolution of a the SS (A1) with gs = 1, ds = 0, us = 0,

Ts = 0, k2 = 0.1; b the SAB (A2) with xab = 0.8, Tab = 0,

Zab = 0, k2 = 0.5; c the SMB (A3) with xm = 0.8, Tm = 0,

Zm = 0, k2 = 0.1; d the SRW (A4) with ag = 1, Tg = 0, Zg = 0,

k2 = 0.5, in the system (20) for different ar, respectively. The

other parameters are the same as in Fig. 1
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localization; both waves exist on a zero-background

[see Fig. 4b2 and d2], which is again different from the

conventional AB and RW [7, 28].

4 Diversely composite waves in coherently coupled

inNLS model

As a direct application of the new similariton

solutions, we now consider a coupled inNLS model

that captures the phenomenon of four-wave mixing

[17, 18]:

i
oQ1

oz
þ dðzÞ o

2Q1

ot2
þ 2rðzÞð Q1j j2þ2 Q2j j2ÞQ1

þ 2rðzÞQ2
2Q

�
1 þ Vðz; tÞQ1 þ iCðzÞQ1 ¼ 0;

i
oQ2

oz
þ dðzÞ o

2Q2

ot2
þ 2rðzÞð Q2j j2þ2 Q1j j2ÞQ2

þ 2rðzÞQ2
1Q

�
2 þ Vðz; tÞQ2 þ iCðzÞQ2 ¼ 0;

ð25Þ

where V(z, t) is the same here as in Sect. 3. In order to

solve these coupled equations, we substitute the linear

transformation [17, 18] for Q1 and Q2:

Qjðz; tÞ ¼
q1ðz; tÞ � ð�1Þ jq2ðz; tÞ

2
; j ¼ 1; 2; ð26Þ

into system (25). That procedure generates a new pair

of independent (i.e., decoupled) equations of the

inNLS type, namely

i
oqj
oz

þ dðzÞ o
2qj
ot2

þ 2rðzÞ qj
�� ��2qj þ Vðz; tÞqj þ iCðzÞqj

¼ 0; j ¼ 1; 2:

ð27Þ

Since Eq. (27) has the same form as Eq. (1), its

solutions such as SS, SAB, SMB and SRW can be

deployed with the aid of Eq. (26) to construct

composite waves that satisfy system (25). For conve-

nience henceforth, we define the symbol ‘‘X–Y’’ to

denote such solutions which are combinations of self-

similar solutions X and Y of Eq. (27) (e.g., ‘‘SAB–

SMB’’ denotes a composite wave composed of an

SAB and an SMB).

We continue with periodic nonlinear system (20)

and apply the explicit self-similar solutions (A1)–(A4)

of Eq. (1) to study the propagation of composite waves

of system (25). As before, the parameter ad plays no

role in the problem since dz(z)/d(z) = 0. Thus, it is

necessary to investigate only the effect of varying ar.
The evolution of the two components for typical

composite waves is shown in Fig. 5. When ar = 1/4,

the trajectories of the SS–SS change periodically with

z, while the intensities of two components remain

unchanged [except for a peak appearing in |Q1|2 and a

valley in |Q2|2 at the collision point––see Fig. 5a1, a2,

respectively]. When ar = 1/2, the trajectories of the

two components of the SS–SS wave are unmodulated

by the periodic nonlinearity, while the intensities

fluctuate periodically as the waves undergo an energy

exchange process [appearing as two peaks in |Q1|2, or a

valley in |Q2|2 at the collision point––see Fig. 5b1 and

b2, respectively]. These properties are fully consistent

with the expressions for the amplitude [Eq. (3)] and

trajectory [Eq. (18)], where the A(z) is a constant for

ar = 1/4 and Tr(z) is a constant for ar = 1/2.

Figure 5c and d also shows the evolution of the

SAB–SMB intensity with ar = 1/4 and 1/2, respec-

tively. The background waves of both components

with ar = 1/2 exhibit periodic fluctuations [see

Fig. 3 The profiles of X2(z),
A(z) and Z(z) in the system

(20) with e = 0, a p(z) = –rp

qpsin(qp z)/[1 ? rp cos(qp
z)] and (b) p(z) = ep z, where

qp = 1, rp = 0.5 ep = 0.1

and ap = 1
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Fig. 5d], while those with ar = 1/4 do not [see

Fig. 5c]. A further observation is that the intensities

of the background waves in both cases change

abruptly at the location (Tm, Zab) of the collision

between the SAB and SMB waves.

Figure 5e and f plots the intensities of SRW–SRW

components with ar = 1/4 and 1/2, respectively. When

ar = 1/4, we find |Q1|2 appears to be ‘volcano-shaped’

[as per a classic RW-like solution – see Fig. 5e1]. In

contrast, when ar = 1/2, we find |Q1|2 has the form of a

‘volcano’-shaped distribution on a strongly fluctuating

background wave [see Fig. 5f1]. It is interesting to

note that |Q2|2 for both values of ar present a localized

bimodal structure on zero-amplitude background [see

Fig. 5e2 and f2]. Such states may be used to generate

high-power twin pulses localized in space–time.

To emphasize the central role of p(z), we consider

the special case of e = 0 in the system (20) and choose

periodic or linear forms according to p(z) = - rpqp
sin(qpz)/[1 ? rp cos(qpz)] and p(z) = epz, respec-

tively. The evolution of the corresponding SS–SS,

SAB–SMB and SRW–SRW is presented in Fig. 6. It is

evident that the two different choices of p(z) can have

a strong impact on the qualitative properties and

controllable features of the composite waves; in

particular, we naturally see more varied qualitative

phenomena for the coupled-inNLS model than for the

inNLS model. With the periodic p(z), intensity |Q1|2 of

the SS–SS composite wave comprises a zero-back-

ground RW-like state while |Q2|2 behaves as ‘eyes-

like’ waves at periodic collision positions [due to the

periodic modulation by p(z) and X2(z)––see Fig. 6a1

and a2, respectively]. With the linear p(z), both |Q1|2

and |Q2|2 of the SS–SS are spatially and temporally

localized, where |Q1|2 has a nonperiodic zero-back-

ground RW-like state and |Q2|2 is a nonperiodic

‘butterfly-like’ wave [due to the modulations by

p(z) and X2(z)––see Fig. 6b1 and b2, respectively].

Comparing Fig. 6c and d, we see that the SAB

component of the SAB–SMB composite wave is much

stronger in |Q2|2 than in |Q1|2. The peaks of the SAB

components are ‘bent’ to two sides around the

collision points in both |Q1|2 and |Q2|2, while the

SMB components manifest single-hump [see

Fig. 6c2], double-hump [see Fig. 6c1 and d2] and

triple-hump [see Fig. 6d1] structures, except for

periodicity of the composite wave in Figs. 6c for

periodic p(z).

Figure 6e and f shows the evolution of SRW–SRW

composite waves. For periodic p(z), intensity |Q1|2

appears to be periodic RW-like with bright wings [cf.

Figure 5e1], while |Q2|2 has a periodic ‘butterfly’-

shaped structure [see Fig. 6e2]. For linear p(z), a

‘volcano’-shaped RW-like structure appears in |Q1|2

[see Fig. 6f1], while twin RW-like structures appear in

|Q2|2 [see Fig. 6f2].

Fig. 4 Evolution of the a SS, b SAB, c SMB and d SRW in system (20) with periodic (top row) and linear (bottom row) p(z). The

corresponding parameters are the same as in Fig. 3
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Finally, we investigate the evolution of composite

waves SS–SAB, SAB–SRW, and SMA–SRW [see

Fig. 7] by choosing the same forms of p(z) and

inhomogeneous systems as those in Fig. 6. After

comparing Fig. 7a, c, and e, and also Fig. 7b, d, and f,

one can observe diverse waveforms and collision

points of the SAB(SRW) component due to different

component nonlinear dynamics. On the one hand,

periodic single-hump [see Fig. 7a1, c2, e2] and double-

hump [see Fig. 7a2, c1, e1] structures appear for the

periodic p(z). On the other hand, valley [see Fig. 7 d2],

single-hump [see Figs. 7b2, d1, f1], and double-hump

[see Figs. 7b1, 7f2] structures are manifest for linear

p(z). The peaks of the SAB component of the SS–SAB

composite wave are ‘bent’ to two sides around the

collision points in both |Q1|2 and |Q2|2 [see Fig. 7a–d].

Two evolutions of SMA–SRW composite waves are

shown in Fig. 7e and f. For periodic p(z), the intensity

|Q1|2 appears to be a periodic double-RW-like struc-

ture with bright wings [cf. Figure 7e1] while |Q2|2 has a

periodic ‘rugby ball’-shaped structure [see Fig. 7e2].

For linear p(z), a RW-like structure with six dark holes

appears in |Q1|2 [see Fig. 7f1], while twin RW-like

structures appear in |Q2|2 along the z-axis [cf.

Figure 7f2]. Such abundant properties imply that one

can achieve diversely controllable composite waves

through careful design of the gain/loss and potential

distributions.

Fig. 5 Intensity evolution of typical composite waves in

periodic nonlinear system (20) for ar = 1/4 (top two rows) and

ar = 1/2 (bottom two rows), respectively. a, b The SS–SS with

gs1 = gs2 = 1, ds1 = –ds2 = 0.3, us1 = us2 = 0, Ts1 = Ts2 = 0, c,

d the SAB–SMB with xab = 0.8, Tab = 0, Zab = 0.6; xm = 0.8,

Tm = 0, Zm = 0; and e, f the SRW-SRW with ag1 = ag2 = 1,

Tg1 = –Tg2 = 0.5, Zg1 = Zg2 = 0. The other parameters are the

same as in Fig. 1
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5 Conclusions

In this work, we have reported a family of exact

similariton solutions for an inNLS equation with

external potentials by proposing a generic self-similar

transformation and identifying relaxed constraint

conditions that combine gain/loss, dispersion, nonlin-

earity, and a matching function representing residual

gain/loss. The parameters involved in the constraint

conditions can be arbitrary real constants, implying

that: (i) the existence condition of the similaritons can

be relaxed, and (ii) there exists an infinite number of

similariton solutions that can be readily controlled

with a careful choice of parameters. Taking a nonlin-

ear inhomogeneous system with periodic properties,

we uncovered rich dynamical behaviors associated

with propagating similaritons. Furthermore, we

applied these newly derived similariton solutions to

a pair of coupled inNLS equations which included

four-wave mixing terms. This procedure has allowed

to investigate, for the first time, families of diversely

controllable composite waves such as SS–SS, SAB–

SMB and SRW–SRW.

It should be pointed out that the foregoing analysis

is only in the designated systems with different free

parameters ar, ad and ap or p(z) as examples, which can

achieve plentifully modulated self-similar waves. In

fact, the exact similaritons family presented in this

work suggest a more in-depth study into the dynamics

of single- and two-component similaritons over a

much greater range of their non-trivial parameter

spaces. Investigating other systems and parameter

Fig. 6 Evolution of the a, b SS-SS, c, d SAB-SMB and e,

f SRW-SRW in the coupled system with periodic (top two rows)

and linear (bottom two rows) p(z), respectively. The parameters

of SS, SAB, SMA SRW are the same as in Fig. 5 except for

Zab = 0. The parameters of p(z) are the same as in Fig. 3a and b,

respectively
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regimes may provide further insight into designing

inhomogeneous fibers in order to realize special wave

control and transmission.

In addition, Eq. (8) is a classic nonlinear physical

model for wave envelopes which has abundant exact

solutions, including N-soliton solutions, first-order

and higher-order breathers and RW solutions

[25, 26, 48]. By deploying other known solutions of

Eq. (8) in combination with transformations (2) and

(25), one can uncover a much wider range of evolution

characteristics and modulation mechanisms relating to

more exotic composite waves in coupled inNLS

systems.
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Appendix A: Explicit self-similar solutions

of Eq. (1)

The explicit solutions of SS, SAB, SMB and SRW for

inNLS Eq. (1) can be obtained by combining

Eqs. (11)–(16) and the exact solutions of the soliton

[22], Akhmediev and Ma breather [23], and rogue

wave (RW) [24] of Eq. (8), which are expressed as

follows:

(1) Exact SS solution:

uSS ¼ k1gs
rðzÞð1�4arÞ=2

dðzÞð1þ4adÞ=2
sech½gsðT � Ts þ 2dsZÞ�

ei½ðg
2
s�d2

s ÞZ�dsTþ/sþ/ðz;tÞ��2ap
R

pðzÞdz;

ðA1Þ

where gs, ds, Ts and /s represent the amplitude,

frequency, initial position and phase of the SS,

respectively.

(2) Exact SAB solution

where a = 2sin(2xab), b = 2sin(xab), xab [ R. The

parameters Zab and Tab are, respectively, related to the

initial position and time-shift of the SAB.

(3) Exact SMB solution

where ma = 2sinh(2xm), mb = 2sinh(xm), xm [ R.

The parameters Zm and Tm determine the initial

position and time-shift of the SMB, respectively.

(4) Exact SRW solution

uSRW ¼ k1

rðzÞð1�4arÞ=2

dðzÞð1þ4adÞ=2
ag

� 1 �
4 þ i16 ag

�� ��2ðZ � ZgÞ
1 þ 4 ag

�� ��2ðT � TgÞ þ 16 ag
�� ��4ðZ � ZgÞ2

" #

� ei 2 agj j2ðZ�ZgÞþ/ðz;tÞ
� 	

�2ap
R

pðzÞdz;

ðA4Þ

where ag is related to the background intensity of the

SRW. The parameters Zg and Tg determine the initial

position and time-shift of the SRW, respectively.

Here, the self-similar variables Z: Z(z) and T: T(z,

t) in (A1)–(A4) are given by Eqs. (12) and (13),

respectively.

Appendix B: Some special cases of similariton (2)

(1) When ap = 0, 5ad = –3ar, r5(z) = d3(z) and

X0 = 0, under the constraint conditions C(z) = 0 and

X2(z) = [–8dz
2(z) ? 5d(z)dzz(z)] /[50d3(z)], the self-

similar variables are reduced to those studied in Ref.

[11]:

uSAB ¼ k1

rðzÞð1�4arÞ=2

dðzÞð1þ4adÞ=2

cosh½aðZ � ZabÞ � 2ixab� � cosðxabÞ cos½bðT � TabÞ�
cosh½aðZ � ZabÞ� � cosðxabÞ cos½bðT � TabÞ�

ei 2ðZ�ZabÞþ/ðz;tÞ½ ��2ap
R

pðzÞdz; ðA2Þ

uSMB ¼ k1

rðzÞð1�4arÞ=2

dðzÞð1þ4adÞ=2

cos½maðZ � ZmÞ � 2ixm� � coshðxmÞ cosh½mbðT � TmÞ�
cos½maðZ � ZmÞ� � coshðxmÞ cosh½mbðT � TmÞ�

ei 2ðZ�ZmÞþ/ðz;tÞ½ ��2ap
R

pðzÞdz;

ðA3Þ
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AðzÞ ¼ k1d
�1=5ðzÞ; ðB1:1Þ

ZðzÞ ¼ k2
1

Z
d1=5ðzÞdz; ðB1:2Þ

Tðz; tÞ ¼ k1d
�2=5ðzÞt � 2k1Z

d1=5ðzÞ k2 þ
Z

d2=5ðzÞX1ðzÞdz
� �

dz; aligned
ðB1:3Þ

/ðz; tÞ ¼ dzðzÞ
10d2ðzÞ t

2 þ
R
d2=5ðzÞX1ðzÞdz

d2=5ðzÞ t

�
Z

d1=5ðzÞ k2 þ
Z

d2=5ðzÞX1ðzÞdz
� �2

dz:

ðB1:4Þ

(2) When ap = 0, ar = 0, ad = - 1/2 and X0(z) = 0,

under the constraint conditions C(z) = –dz(z)/2d(z)

and X2(z) = [r(z)rz(z)dz(z) ? 2d(z)rz
2(z) – d(z)r(z)rzz

(z), the self-similar variables are reduced to the first

case reported in Ref. [18]:

A zð Þ ¼ k1 d zð Þr zð Þ½ �1=2; ðB2:1Þ

ZðzÞ ¼ k2
1

Z
dðzÞr2ðzÞdz; ðB2:2Þ

Tðz; tÞ ¼ k1rðzÞt

� 2k1

Z
dðzÞr2ðzÞ k2 þ

Z
X1ðzÞ
rðzÞ dz

� �� �
dz;

ðB2:3Þ

/ðz; tÞ ¼ � rzðzÞ
4dðzÞrðzÞ t

2 þ rðzÞ k2 þ
Z

X1ðzÞ
rðzÞ dz

� �
t

�
Z

dðzÞr2ðzÞ k2 þ
Z

X1ðzÞ
rðzÞ dz

� �2
" #

dz:

ðB2:4Þ

(3) When ap = 0, ar = 1/2, ad = - 1/2 and

X0(z) = 0, under the constraint conditions X2(z) = 0

and C(z) = rz(z)/2r(z) – dz(z)/2d(z), the self-similar

variables are reduced to those reported in Refs.

[12, 18]:

A zð Þ ¼ k1 d zð Þ=r zð Þ½ �1=2; ðB3:1Þ

ZðzÞ ¼ k2
1

Z
dðzÞdz; ðB3:2Þ

Tðz; tÞ ¼ k1t � 2k1

Z
dðzÞ k2 þ

Z
X1ðzÞdz

� �
dz;

ðB3:3Þ

/ðz; tÞ ¼ ½k2 þ
Z

X1ðzÞdz�t

�
Z

½dðzÞðk2 þ
Z

X1ðzÞÞ2�dz: ðB3:4Þ

(4) When ap = 1/2, ar = 0, ad = 0, p(z) = wz(z)/

w(z) and d(z) = r(z) = 1, X0(z) = X1(z) = 0, under the

constraint conditions C(z) = wz(z)/2w(z) and X2-

(z) = wzz(z)/4w(z), the self-similar variables are

reduced to those reported in Refs. [33, 34]:

AðzÞ ¼ k1

wðzÞ ; ðB4:1Þ

ZðzÞ ¼ k2
1

Z
w�2ðzÞdz; ðB4:2Þ

Tðz; tÞ ¼ k1w
�1ðzÞt � 2k1k2

Z
w�2ðzÞdz; ðB4:3Þ

/ðz; tÞ ¼ wzðzÞ
4wðzÞ t

2 þ k2

wðzÞ t � k2
2

Z
1

w2ðzÞdz: ðB4:4Þ

It should be pointed out that there is a slight

difference among Appendix B and Refs.

[11, 12, 18, 33, 34] due to the different coefficients

used in the theory.
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