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Abstract Based on the complex Ginzburg–Landau

equation, propagation dynamics of multipole solitons

generated in the dissipative system are numerically

investigated by the split-step Fourier method. The

effect of the value of the different Lévy indexes on

stability regions of the soliton has been explored. In

addition, we observe domains of different outcomes of

the evolution of the input beam in the parameter plane

of linear loss coefficient or diffraction gain coefficient

and cubic gain coefficient. The results show that the

evolution can lead to three different outcomes: decay,

development into stable single soliton, expansion into

the spreading pattern. We also study the evolution of

multipole solitons generated with larger quintic loss

coefficients and find that the input splits into the

symmetrical fragments in the initial propagation. It is

also demonstrated that two solitons or three solitons

merge into the single soliton. Meanwhile, the rela-

tionship of merging distance with Lévy index and

initial amplitude is also given.

Keywords Complex Ginzburg–Landau equation �
Pearcey–Gaussian beam � Multipole solitons

1 Introduction

In the past few decades, optical solitons have been

studied extensively because of their broad application

prospects in the field of optical communication [1, 2].

As early as 1973, the single soliton solution and the

n-order soliton solution of the nonlinear Schrödinger

equation were obtained via the inverse scattering

transformation method by Hasegawa and Tappert,

thus theoretically predicting the formation of solitons

in optical fibers [3]. Subsequently, in 1980, Mol-

lenauer et al. at Bell Laboratories experimentally

succeeded in observing the transport of the soliton in

optical fibers, which verified the inference of Hase-

gawa and Tappert [4]. However, in practical applica-

tions, the long-distance and high-speed optical fiber

communication system also contained the supply of

energy and the balance between losses during trans-

mission. Therefore, the dissipative solitons in the

dissipative system have received a lot of attention

from researchers in recent years. The concept of

dissipative system was initially proposed in the

thermodynamic system, which refers to an open

system far away from the equilibrium state. Through

constantly exchanging materials and energy with the

outside world, it is possible to transit from the original

disordered state to the ordered state in time and space

when the changes in internal and external conditions

reach a certain equilibrium state [5–7]. The introduc-

tion of the concept of dissipative systems has provided

new concepts and methods for the study of the field of
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optics. It is worth mentioning that researchers have

deeply investigated the existence and stability of

dissipative solitons in dissipative nonlinear systems as

well as the interaction between dissipative solitons

[8–10]. It has a wide range of application prospects in

the fields of pattern recognition, parallel data process-

ing, optical fiber communication systems, all-optical

switching, logic gates and laser cooling [11].

The general model of light propagation in nonlinear

dissipative media is the CGLE, which can be regarded

as a dissipative extension of the nonlinear Schrödinger

equation and can be used to describe nonlinear

dissipation phenomena such as superconductivity,

fluid dynamics, the formation of reaction–diffusion

modes, Bose–Einstein condensation, liquid crystals,

quantum field theory, second-order phase transitions,

etc. [12, 13]. In particular, the CGLE, as a realistic

dynamical model of laser cavities, can be directly

realized in nonlinear optics, and can support the

formation of stable vortex solitons and rotating

solitons [14, 15]. Subsequently, the researcher studied

the interaction between solitons in the dissipative

system described by the cubic–quintic competitive

nonlinear Ginzburg–Landau equation. The phe-

nomenon of fusion, repulsion, scattering and splitting

among solitons has been observed [16]. Weitzner and

Zaslavsky derived the fractional generalization of

CGLE from the variational Euler–Lagrange equations

in fractal media [17, 18]. Due to the generality of the

cubic–quintic CGLE and its important role in various

optical systems, numerous researchers have taken a

keen interest in it, resulting in many research results.

For example, localized numerical impulse solutions in

diffuse neural networks modeled by the CGLE were

explored in 2016 [19]. New optical solutions of CGLE

arising in semiconductor lasers were explored in 2019

[20]. In 2020, researchers used the fractional Riccati

method and the fractional bifunction method to solve a

(2 ? 1)-dimensional CGLE, and analyzed the exact

traveling wave solutions including soliton solutions

and combined soliton solutions [21]. The exact

solutions of the CGLE in the sense of the conformable

fractional derivative were established via the complete

discrimination system method in 2021 [22].

Optical solitons in complex Ginzburg–Landau

dissipative systems with fractional diffraction have

been extensively studied in recent years, and it has

been found that many novel physical phenomena of

optical solitons have been obtained. In 2018, the

transport characteristics and stability conditions of the

dark, bright, combined dark-bright, singular, com-

bined singular optical solitons formed by fractional

diffraction Ginzburg–Landau system were investi-

gated in Kerr media [23]. The soliton solutions of

CGLE were constructed in Kerr and non-Kerr media

in 2018. These new solitons were optical solitons in

dissipative space described by hyperbolic functions,

trigonometric functions and rational functions [24].

Using the improved Jacobian elliptic function expan-

sion method, the researcher derived discrete soliton

solutions of conformable fractional discrete CGLE in

2021 [25]. In order to further discuss the kinetic

behavior of the Ginzburg–Landau equation for frac-

tional diffraction, the researchers acquired the trigono-

metric, hyperbolic trigonometric and rational

solutions through the improved F-expansion method

in the sense of quadratic-cubic nonlinearity, and

obtained the bright, dark, combined bright-dark,

singular soliton, mixed singular soliton and singular

periodic wave solutions in 2023 [26].

In the recent period, due to the novel properties and

potential application value of Pearcey–Gaussian

beam, it has been widely studied by researchers,

which has produced a lot of new research results, such

as tightly focused characteristics of the auto-focusing

linear polarized circular Pearcey–Gaussian vortex

beams (CPeGVBs) with on-axis and off-axis vortex

pairs through high numerical aperture that were

reported in 2021. The results had the wide applications

in reverse shaping of focal fields and optical trapping

control [27]. The evolution and interaction of the

Pearcey–Gaussian beam in nonlinear Kerr medium

were numerically studied by Lu Li et al. in 2022. The

results showed that the main lobe and side lobes of

Pearcey–Gaussian beam separate, forming solitons

during propagation [28]. The evolution of the chirped

elliptical Pearcey–Gaussian vortex (CEPGV) beams

in free space was numerically investigated in 2022. It

was concluded that the focusing intensity, the focal

length and the transverse intensity distribution of

CEPGV beams during the propagation can be con-

trolled [29].

In the previous work, He’s team chose the Gaussian

beam as the input beam. Dissipative soliton dynamics

in complex fractional Ginzburg–Landau systems were

studied [30]. In this paper, the Pearcey–Gaussian beam

is selected as the most suitable input beam. The main

reason is that on the one hand, Pearcey–Gaussian
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beam is a special diffractive beam, and the Pearcey–

Gaussian beam, as a kind of beam similar to Airy

beam, also has the characteristics of self-healing, self-

accelerating and self-focusing. On the other hand, we

found that Pearcey–Gaussian beams can produce good

and interesting phenomena. In this paper, the propa-

gation dynamics of Pearcey–Gaussian beams in the

CGLE is numerically investigated. The results show

that the dissipative single solitons and dissipative

multipole solitons are obtained by the simultaneous

balance of gain versus loss, as well as self-focusing

nonlinearity versus dispersion. It is also demonstrated

that the CGLE with different nonlinearities exhibits a

rich variety of nonlinear phenomena, including the

splitting of the soliton in the initial propagation, the

occurrence of breathing of solitons at the beginning of

the transmission process, and the formation of multi-

pole solitons. In addition, we discuss that the different

propagation regions of the Pearcey–Gaussian beams in

the parameter plane of Lévy indexes and dissipative

parameters, as well as in the parameter plane of other

dissipative parameters. Besides, the required distance

before the merger of soliton is mainly affected by the

Lévy indexes and the initial amplitudes. Many fasci-

nating and novel phenomena can be observed by

reasonably varying dissipative system parameters and

input beam parameters. The propagation dynamics of

the Pearcey–Gaussian beams can be greatly enriched

via the above conclusions and provide the possibility

of their application in the field of nonlinear optics.

2 Theoretical model

The propagation of Pearcey–Gaussian beams along

axis z in dissipative system can be described by the

following cubic–quintic CGLE [30]

iuz �
1

2
ð� o2

ox2
Þ
a
2uþ ibð� o2

ox2
Þ
a
2uþ iduþ uj j2u

þ ie uj j2uþv uj j4uþ il uj j4u
¼ 0 ð1Þ

The fractional derivative of Eq. (1) is the integral

operator that can be defined as

� o2

ox2

� �a=2
u ¼ 1

2p

Z Z d

kdn kj jauðnÞ exp ik x� nð Þ½ �

ð2Þ

where u is the light field, k is the spatial frequency, x

and z are the transverse coordinate and transmission

distance respectively. The cubic self-focusing coeffi-

cient is equal to 1, and the quintic self-defocusing

coefficient is v. a is the Lévy index. The interval of

values of a is 1� a� 2. In fractional quantum

mechanics and Lévy path integrals, Lévy index also

takes values in this interval [31, 32]. On the one hand,

most of the soliton solutions of the fractional nonlinear

equations are concentrated in the range where

1� a� 2 [33], mainly because critical collapse and

supercritical collapse occurs when the a� 1. On the

other hand, in the limit where the a ¼ 2, the fractional

Laplace operator is reduced to the classical integer

Laplace operator, and then the Eq. (1) naturally

reduces to the well-known CGLE.b[ 0 represents

dispersion gain, d\0 denotes linear loss, e[ 0 is the

cubic gain, and l\0 accounts for the quintic loss

coefficient.

Here, the Pearcey–Gaussian beam is chosen as the

input beam

wðx; 0Þ ¼ APeðxÞ expð�v2
0x

2Þ ð3Þ

where A is the amplitude of the Pearcey–Gaussian

beam and v0 is the distribution factor. PeðxÞ ¼Rþ1
�1 exp iðs4 þ s2xÞ½ �ds is the one-dimensional Pear-

cey function.

3 Numerically analysis and discussion

By systematic numerical simulations, various results

produced may be vividly exhibited for parameter

value v ¼ �0:1. In simulations, the distribution factor

of the input bean v0 ¼ 0:1 is fixed. To report results of

numerical simulations in detail, firstly, we investigate

the influence of the linear loss coefficients and of the

Lévy indexes on the optical field propagation. The

interesting phenomenon can be easily observed from

Fig. 1a, where the different propagation scenarios in

the parameter plane of the linear loss coefficient and

Lévy index is presented. In region b of Fig. 1a, when

the linear loss coefficient is too small to ensure

stable propagation of the self-trapped state, and in the

case of large linear loss and small Lévy index,

stable solitons cannot be produced, the input beam

decays during transmission as Fig. 1b show. It is noted

that we give a comparison of beams evolution as the
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region c and region d of Fig. 1a show. When the linear

loss coefficients take values between the black line and

the red line in Fig. 1a, multipole solitons are gener-

ated, and the number of solitons decreases from five to

three for the further the transmission distance, and

then it keeps transmitting stably with three parallel

solitons in Fig. 1c. The phenomenon is mainly

attributed to the fact that the two solitons located on

both sides of the center position respectively merge

into one soliton after the short transmission distance,

leading to the formation of three parallel solitons. If

the linear loss coefficient takes values in region d in

Fig. 1a, the pattern of generated multipole solitons is

different from that formed in region c. And the details

are presented in Fig. 1d, three solitons in the center

position quickly merging into one soliton during

transmission, and then three solitons with parallel

transmission are formed. For d ¼ �1:4, the region d

vanishes as Fig. 1a show. For further increasing the

Lévy index and making the linear loss coefficient take

values in the region e in Fig. 1a, the input beam

evolves into three solitons as shown in Fig. 1e.

Finally, when the linear loss coefficients take values

in the region f in Fig. 1a, the input beam transmits

stably with single soliton. If we further decrease linear

loss coefficient by less than �5:9, the single soliton

phenomenon in the region f of Fig. 1a will disappear.

These interesting phenomena indicate the complexity

Fig. 1 a is the domains of the different propagation scenarios in

the plane of parameters ðd; aÞ of the input Pearcey–Gaussian

beam for fixed b ¼ 3, e ¼ 2:5, l ¼ �0:1. Region b: decay of the

input Pearcey–Gaussian beam; Region c: a tertiary soliton

formed by the merger of two solitons; Region d: a tertiary

soliton formed by the merger of three solitons; Region e: the

input light field evolves into three solitons; Region f: the input

light field evolves into one soliton. b Dissipation of the input

Pearcey–Gaussian beam for d ¼ �1:3; a ¼ 1 [corresponds to

region b shown in Fig (a)]. c Formation of tertiary solitons due to

the merger of two solitons for d ¼ �0:7; a ¼ 1:1 [corresponds

to region c shown in Fig (a)]. d Formation of tertiary solitons

because of the merger of three solitons for d ¼ �0:4; a ¼ 1:2
[corresponds to region d shown in Fig (a)]. e Formation of three

solitons for d ¼ �1:3; a ¼ 1:5 [corresponds to region e shown

in Fig (a)]. f Formation of one soliton d ¼ �3:5; a ¼ 2

[corresponds to region f shown in Fig (a)]. Here, the other

parameters are A ¼ 3; v0 ¼ 0:1
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of the effects of the linear loss coefficients and the

Lévy indexes. According to Fig. 1, we conclude that

the formation of the soliton can be controlled by

adjusting the values of linear loss and Lévy index.

For obviously depicting beams dynamics, the

results summarized in Fig. 2 show that the beam can

evolve into seven different outcomes. The different

propagation scenarios in the parameter plane of the

cubic gain coefficient and Lévy index are given in

Fig. 2a. In region b in Fig. 2a, it is found that the input

decays under the action of smaller the cubic gain

coefficient and larger Lévy index (larger the cubic gain

coefficient and smaller Lévy index), which cannot

support stable propagation, as shown in Fig. 2b. When

the cubic gain coefficients take values in region c in

Fig. 2a, the beam shows periodic breathing phe-

nomenon in the initial stage of propagation under the

effect of larger Lévy index. However, the periodic

breathing property of beams gradually disappears

during propagation and eventually a stable soliton-like

state occurs, as shown in Fig. 2c. Region c of Fig. 2a

disappears at e ¼ 1:6. When the cubic gain coefficient

increases to values in region d of Fig. 2a, the beam has

the breathing phenomenon in the initial propagation,

which disappears as the propagation distance increases

and eventually forms three stable solitons as Fig. 2d

show. The input evolves into three stable solitons for

further increasing the cubic gain coefficients, and the

interval between solitons also becomes smaller as

shown in Fig. 2e. In addition, in region f of Fig. 2a,

strong diffraction effect leads to the formation of

stable single soliton, as shown in Fig. 2f. The input

evolves into five mirrored solitons when the cubic gain

coefficient takes values in the region g in Fig. 2a, as

shown in Fig. 2g. Finally, the influence of weak

diffraction phenomenon can be indicated from the

region i of Fig. 2a, the pattern of the generated

multipole solitons distinctly changes which three

solitons in the center position merge into one soliton

during propagation, and then it keeps transmitting

Fig. 2 a is the domains of the different propagation scenarios in

the plane of parameters ðe; aÞ of the input Pearcey–Gaussian

beam for fixed b ¼ 2, d ¼ �0:5, l ¼ �0:1. Region b: decay of

the input Pearcey–Gaussian beam; Region c: the self-capture

soliton exhibit breathing phenomenon at the initial propagation;

Region d: three solitons exhibit breathing phenomenon at the

initial propagation; Region e: the input light field evolves into

three solitons; Region f: the input light field evolves into one

soliton; Region g: the input light field evolves into multiple

solitons; Region i: multiple solitons formed by the merger of

three solitons. b Dissipation of the input Pearcey–Gaussian

beam for e ¼ 2:5; a ¼ 1 [corresponds to region b shown in Fig

(a)]. c Formation of a stable soliton with initial breathing states

for e ¼ 1:3; a ¼ 1:5 [corresponds to region c shown in Fig (a)]. d
Formation of three stable solitons with initial breathing states for

e ¼ 1:5; a ¼ 1:5 [corresponds to region d shown in Fig (a)]. e
Formation of three stable solitons for e ¼ 2:6; a ¼ 1:4 [corre-

sponds to region e shown in Fig (a)]. f Formation of a

stable soliton for e ¼ 2:9; a ¼ 1:8 [corresponds to region f

shown in Fig (a)]. g Formation of multiple solitons for e ¼
2:8; a ¼ 1:4 [corresponds to region g shown in Fig (a)]. i
Formation of multiple solitons due to the merger of three

solitons for e ¼ 2:7; a ¼ 1:3 [corresponds to region i shown in

Fig (a)]. Here, the other parameters are A ¼ 3; v0 ¼ 0:1
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stably in the five solitons state, as Fig. 2i show. One

can conclude that the state and the number of

dissipative solitons can be changed by choosing the

cubic gain coefficient and Lévy index reasonably.

The effect of dispersion gain coefficient and Lévy

index on the parameter region of propagation scenar-

ios of symmetrical Pearcey–Gaussian beams is dis-

played in Fig. 3a. In region b of Fig. 3a, the input

decays because of the impact of weak diffraction, as

shown in Fig. 3b. It produces three solitons traveling

in parallel to each other if we take value of region c in

Fig. 3a, as shown in Fig. 3c. And it can be seen from

Fig. 3a that the region c will no longer exist if the

diffraction gain coefficient is equal to 3.2. When the

diffraction gain coefficient takes values in the region d

in Fig. 3a, the input beam develops into single soliton

state, as shown in Fig. 3d. Therefore, the number of

solitons can be controlled by changing the diffraction

gain coefficient and the Lévy index.

In order to give an intuitive view to the adjusting

effect of the Lévy index, the relationship between the

merger distance of two solitons and Lévy index is

evidently presented in Fig. 4a. For a deeper under-

standing of beam dynamics, the evolution of three

points on the black line of Fig. 4a is given in Fig. 4b–

d, respectively. From Fig. 4b–d, it can be seen that the

input forms stable dissipative solitons when the

nonlinearity and diffraction, gain and loss are balanced

simultaneously. The weak diffraction gain and the

strong quintic loss lead to the merging of the two

solitons. In particular, it is easy to find in Fig. 4a that

the merger distance of two solitons depends on the

Lévy index. The merger distance decreases with the

increment of the Lévy index, and then tends to be

constant. For smaller diffraction gain coefficient, the

merger distance becomes the larger as the black line in

Fig. 4a display, however, while the larger absolute

value of quintic loss coefficient makes the merger

distance smaller, as shown in the pink line in Fig. 4a.

Comparing the red line and blue line in Fig. 4a, it can

be found that the effect of varying the linear loss

coefficient on the merge distance is basically

Fig. 3 a Domains of

different propagation

scenarios of the input

Pearcey–Gaussian beam in

the plane of parameters

ðb; aÞ with fixed

d ¼ �0:5; e ¼ 2;l ¼ �0:1.

Region b: decay of the input

Pearcey–Gaussian beam;

Region c: the input light

field evolves into three

solitons; Region d: the input

light field evolves into a

soliton; b Dissipation of the

input Pearcey–Gaussian

beam for b ¼ 2:5; a ¼ 1:1
[corresponds to region b

shown in Fig (a)]. c
Formation of three

stable solitons for b ¼
2:4; a ¼ 1:6 [corresponds to

region c shown in Fig (a)]. d
Formation of three

stable solitons for

b ¼ 3:5; a ¼ 1:8. Here, the

other parameters are

A ¼ 3; v0 ¼ 0:1
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invariant. Therefore, it is possible to control the

required transmission distance before the two solitons

merger by appropriately changing the value of the

Lévy index.

The initial pulse amplitude represents the signifi-

cant influence on dynamics of the generated soliton.

Figure 5a shows the required transmission distance

before the merger of the three solitons versus the initial

amplitude. The evolution of three points taken on the

black line in Fig. 5a can be indicated from Fig. 5b–d.

Note that the merger distance apparently increases

with the initial amplitude. As shown in the black and

red lines in Fig. 5a, it is interesting to verify the fact

that for fixed the initial amplitude, the merger distance

of the three solitons increases obviously with the

decrease of the diffraction gain coefficient. It can be

seen from the red line and blue line in Fig. 5a, the

smaller the absolute value of linear loss coefficient

leads to the merger distance larger. As a result, the

conclusion can be obtained with no difficulty that the

merger distance of the three solitons is controlled by

changing the value of the initial amplitude, linear loss

coefficient and diffraction gain coefficient. Thus,

evolution state of multipole solitons can be controlled.

The influence of the cubic gain coefficient and

linear loss coefficient on the optical field propagation

can be observed from Fig. 6a, where different prop-

agation scenarios in the parameter plane of the cubic

gain coefficient and linear loss coefficient is given.

When the cubic gain coefficient takes values in region

b in Fig. 6a, the input rapidly decays because the cubic

gain coefficient is too small, and the phenomenon can

be explained that the external gain cannot balance the

strong loss, as shown in Fig. 6b. The input Pearcey–

Gaussian beam starts to evolve into stable single

soliton when the cubic gain coefficient increases to

values in region c of Fig. 6a, as shown in Fig. 6c. If the

cubic gain coefficient is further increased, it causes the

expansion phenomenon of the input beam due to

excess gain, as shown in Fig. 6d. In Fig. 6a, there is

the similar propagation scenario is presented in the

parameter plane of the cubic gain coefficient and the

diffraction gain coefficient. It can be concluded that

the cubic gain coefficient is an important factor

Fig. 4 a The transmission

distance necessary for two

stable solitons to merge as a

function of Lévy indexes.

For fixed

b ¼ 0:6; d ¼ �0:6;l ¼ �1,

examples of the merger

when we take different Lévy

indexes b a ¼ 1 c a ¼ 1:1 d
a ¼ 1:3. Here, the other

parameters are

A ¼ 3; v0 ¼ 0:1; e ¼ 2:5.

(Color figure online)
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affecting the formation of stable single soliton, too

small will lead to diffraction, but too large will also

make the beam spread.

To understand the influence of the quintic loss

coefficient on the evolution of the generated solitons,

the evolution of Pearcey–Gaussian beams for different

values of the Lévy index and quintic loss coefficient is

showed in Fig. 7. It can be seen from Fig. 7 that the

input beam forms single soliton, multipole solitons

and other soliton-like states resulting from the joint

balance of self-focusing nonlinearity and diffraction,

gain and loss. In Fig. 7a1, the mirrored multipole

solitons are generated during propagation, as the Lévy

index increases, it develops into three parallel-trans-

mitting solitons as Fig. 7b1 show. Further increasing

the Lévy index, one can find that two attracting

solitons are occurred on both sides of the center

position in the initial stage of propagation. But this

phenomenon will not exist if the propagation

continues, and then the formation of three parallel-

transmitting solitons, as shown in Fig. 7c1. In

Fig. 7a2–a3, b2–b3 and c2–c3, when l ¼ �0:5, as

the Lévy index increases, the speed at which the beam

returns to single soliton becomes faster and faster in

the initial stage of propagation. With the increase of

the absolute value of the quintic loss coefficient, note

that the transverse width of the soliton increases for a

larger lj j.
The evolution of the Pearcey–Gaussian beam for

different the cubic gain coefficients and quintic loss

coefficients is presented in Fig. 8. As shown in

Fig. 8a1–c1, one importance is noted that the gener-

ation of multipole solitons. As the cubic gain coeffi-

cient increases, the beam evolves into from three

parallel solitons to the five parallel solitons. In

Fig. 8a2–a3, b2–b3 and c2–c3, the single soliton is

formed during transmission when the absolute value of

the quintic loss coefficient becomes larger. And the

Fig. 5 a The transmission distance necessary for three

stable solitons to merge as a function of initial amplitudes. For

fixed d ¼ �0:5;b ¼ 2:5; e ¼ 2:5, examples of the merger when

we take different initial amplitudes b A ¼ 1:5 c A ¼ 2 d
A ¼ 2:3. Here, the other parameters are

v0 ¼ 0:1; a ¼ 1:1;l ¼ �0:1. (Color figure online)
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transverse width of the single soliton is wider with the

increase of lj j. Simultaneously, with the increase of

the cubic gain coefficients, the distance which the

beam returns to single soliton becomes farther and

farther in the initial stage of propagation. Therefore,

the reasonable adjustment of the cubic gain coefficient

and quintic loss coefficient enables generation of

multipole solitons.

4 Conclusion

In summary, the influence of the dissipative coeffi-

cient, Lévy index and initial amplitude on the prop-

agation characteristics of Pearcey–Gaussian beams in

the complex fractional cubic–quintic Ginzburg–Lan-

dau systems is numerically investigated. The system-

atic simulations evidently reveal the generation of

stable multipole solitons and single soliton, in addition

to soliton-like. We clearly find that the domains that

support the different outcomes of the evolution in

various parameter spaces. The effect of the dissipative

coefficient and Lévy index on stability regions of

dissipative solitons generated is mainly studied. The

results show that the pattern of multipole solitons, the

number and state of solitons can be controlled by

adjusting the dissipative coefficient and Lévy index. In

particular, it is demonstrated that the evolution can

lead to three different outcomes through the interac-

tion of linear loss or diffraction gain and cubic gain:

decay, develop into stable single soliton, expands into

the spreading pattern. Besides, the quintic loss shows

the significant influence on dynamics of the generated

solitons. It is worth mentioning that two solitons or

three solitons merge into the single soliton, with the

merger distance also determined by Lévy index and

the initial amplitude of the input beam. The obtained

results provide some realizations and applications in

the light guiding and switching.

From the application aspect, the number and

position of solitons are controlled by changing

parameters of beam and medium in this paper. The

Fig. 6 a Domains of different propagation scenarios of the

input Pearcey–Gaussian beam in the plane of parameters ðd; eÞ
with fixed b ¼ 1:6. a1 Domains of different propagation

scenarios of the input Pearcey–Gaussian beam in the plane of

parameters ðb; eÞ with fixed d ¼ �0:1. Region b: decay of the

input Pearcey–Gaussian beam; Region c: the input light field

evolves into a stable soliton; Region d: spread for the

underdamped setting; b Dissipation of the input Pearcey–

Gaussian beam for d ¼ �1:2; e ¼ 2:4 [corresponds to region b

shown in Fig (a)]. c Formation of stable solitons for d ¼
�0:4; e ¼ 2:1 [corresponds to region c shown in Fig (a)]. d
Spread for the underdamped setting for d ¼ �1:2; e ¼ 4:7.

Here, the other parameters are

A ¼ 3; v0 ¼ 0:1; a ¼ 1:5;l ¼ �1
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stabilized multipole optical solitons obtained can lay a

theoretical foundation for the development of better

optical switches, which can provide ideas for the

development of new optical switching devices. Simul-

taneously, the Ginzburg Landau model used in this

paper is an important class of nonlinear systems,

which describes the existence of many rich physical

phenomena in the dissipative medium system, and the

optical soliton phenomenon is one of them, so it has a

good application value in the fields of optical infor-

mation processing devices, optical tweezers micro-

nano control technology, condensed matter physics,

and plasma, etc., especially for the research and

development of new optical devices to provide an

important theoretical basis.

Fig. 7 The evolution of the Pearcey–Gaussian for different

Lévy indexes a and quantic loss coefficients l. The Lévy

indexes are respectively a ¼ 1:2; 1:7; 2 from top to bottom. The

quantic loss coefficients are l ¼ �0:1;�0:5;�1 from left to

right. Here, the other parameters are

A ¼ 3; v0 ¼ 0:1;b ¼ 2; d ¼ �0:1; e ¼ 2:5
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