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Abstract We investigate the dynamics and manip-

ulation of finite energy Airy (FEA) beam in fractional

system with diffraction modulation and PT-symmetric

potential. In the absence of PT-symmetric potential,

we first present the approximate analytical solution of

chirp-free FEA beam. Based on the analytical solu-

tion, we investigate analytically and numerically the

split and collision of chirp-free FEA beam under

diffraction modulation, and discuss the possibility of

inverse design of diffraction modulation according to

the predefined trajectory. Furthermore, through coher-

ent combining technique, we derive the analytical

solution of chirped FEA beam, and investigate

analytically and numerically the asymmetric evolu-

tions of chirped FEA beam in real space and spectral

space, and discuss qualitatively the relation between

the asymmetry and the chirp parameter. In the

presence of PT-symmetric potential, we derive a

general eigenvalue equation dependent on diffraction

modulation and present the band structure modulated

by varying fractional diffraction. Based on the band

structure modulated by varying fractional diffraction,

we study numerically the asymmetric conical

evolution of chirp-free FEA beam under diffraction

modulation, which demonstrates that the propagation

channels of FEA beam can be jointly manipulated by

diffraction modulation and PT-symmetric potential.

For chirped FEA beam, the competition effect

between the chirp and the PT-symmetric potential on

the beam dynamics is explored in detail.

Keywords Airy beam � Fractional Schrödinger
equation � Diffraction modulation � PT-symmetric

potential

1 Introduction

Airy wave packet is firstly observed by Berry and

Balazs within the framework of quantummechanics in

1979 [1]. It has been demonstrated that Airy wave

packet has unique characteristics such as non-diffrac-

tion, self-acceleration and self-healing, but it is non-

integrable and possesses infinite energy because of its

oscillating tail [1]. In 1996, the finite energy Airy

(FEA) wave packet with exponentially decaying tail is

predicted in unbiased nonlinear photorefractive media

[2], which manifests that the FEA wave packet can

still maintain non-diffraction and self-acceleration

over long distance. In 2007, one-dimension (1D) FEA

beam is firstly explored and then observed experi-

mentally in the context of optics [3, 4]. The
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observation of 1D FEA beam in experiment provides

the fundament to explore the dynamics of FEA beam

in various conservative systems [5–7], such as in linear

potential [5], parabolic potential [6] and on curved

surfaces [7], etc. Importantly, based on the unique

characteristics and physical realization, FEA beam is

found various applications in particle manipulation

[8], optical trapping [9], and curved plasma channel

generation [10]. To achieve more applications, the

propagation dynamics of Airy beam need to be

precisely manipulated.

On the other hand, the fractional derivative

included in fractional system, as an extension of

integer-order derivative can be used to describe the

real-world nonlocal dynamics of complex physical

systems [11–13], such as the capacitor microphone

[11], tumor-immune system [12] and permanent

magnet synchronous motor system [13]. The frac-

tional Schrödinger equation (FSE) is an extension of

Schrödinger equation (SE) by constructing a fractional

path integral over Lévy flight paths [14–16]. The FSE

has successfully described the behavior of particles

with fractional spin [17] and an effective model of

Lévy crystal in condensed-matter environment [18], to

name a few. Based on the mathematical analogy

between the quantum mechanical SE and the paraxial

equation of optical beam propagation, in 2015, Longhi

inventively introduced the FSE into optics and

proposed accessible optical implementation of frac-

tional model in aspherical optical cavities [19].

Recently, Zhang et al. proposed that a honeycomb

lattice can be a possible realization of the FSE by

establishing a connection with the Dirac-Weyl equa-

tion [20]. So far, the propagation of beams governed

by the FSE has also attracted wide research interest.

Zhang et al. explored the propagation of Gaussian

beam in FSE and demonstrated that the Gaussian beam

may split into two non-diffracting sub-beams in the

absence of external potential [21] and a parabolic

potential can induce harmonic oscillation of Gaussian

beam during propagation in FSE [22]. Nonlinear-wave

structures in fractional system [23] governed by the

FSE has also attracted wide research interest. Zeng

et al. reported families of gap solitons with fractional

diffraction and saturable nonlinearity [24]. Zang et al.

and Xin et al. investigated the splitting dynamics of 1D

and 2D Gaussian beams governed by linear variable-

coefficient FSE, respectively [25, 26]. In addition, in

linear and nonlinear regimes, the evolutions of other

beams, such as Bessel-Gaussian beam [27], necklace

beam [28], soliton-like beam [29], Mainardi beam

[30], Laguerre- Gaussian beam [31], Airy beam

[32–36], have also been reported extensively. In view

of the unique characteristics of Airy beam, Huang

et al. studied the reflection and self-imaging of FEA

beam induced by linear potential in FSE [32, 33]. Chen

et al. investigated the dynamics and interaction of FEA

beams in FSE with linear potential [34]. In addition,

breather soliton forming [35] and autofocusing of Airy

beam [36] are also hot topics. However, it is worth

mentioning that most of the above reports on Airy

beam are numerical. Because of the asymmetry and

complex expression of Airy beam, the analytical Airy

solution that theoretically describes its dynamics in

FSE is difficult to derive. Up to now, the analytical

solution of Airy beam in FSE with varying diffraction

coefficient is still lacking, especially analytical

chirped Airy solution.

As well known, non-Hermitian Hamiltonian may

exhibit entirely real eigenvalue spectra provided it

possesses PT-symmetry [37]. A Hamiltonian Ĥ ¼
p̂2
�
2þ Vðx̂Þ associated with a PT-symmetric poten-

tial indicates its commuting with the parity-time

operator, i.e. Ĥ; P̂T̂
� �

¼ 0, which implies Ĥ and P̂T̂

have the same eigenfunctions. Here the parity operator

P̂ is defined as p̂ ! �p̂,x̂ ! �x̂ and the time operator

T̂ as p̂ ! �p̂,x̂ ! x̂,î ! �î, where p̂ and x̂ represent

the momentum and position operators, respectively.

From this point, a necessary (but not sufficient)

condition for a Hamiltonian to be PT-symmetric is

V xð Þ ¼ V� �xð Þ, namely, whose real part is an even

function of the position while imaginary part is odd of

the position. Drawing an analogy to scalar paraxial

optics, PT-symmetric potential can be realized by

involving symmetric index guiding and antisymmetric

gain/loss profile [38, 39]. In Optics, PT-symmetric

potential plays an important role in the dynamics of

beam. In conventional diffraction system, PT-sym-

metric potential can support double refraction and

secondary emission of Gaussian beam [38, 39]. In

fractional diffraction system, Zhang et al. and Wu

et al. studied the propagation of Gaussian beam in PT-

symmetric potential and found PT-symmetric poten-

tial can induce conical diffraction in linear regime

[40, 41]. Also, in nonlinear regime with fractional

diffraction in PT-symmetric potential, the existence

and stability of various solitons [42–45] such as vortex
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soliton [42], gap soliton [43] and oscillating soliton

[44] and the symmetry-breaking of soliton [45] have

drawn some attention. However, the diffraction

behavior of Airy beam in modulated fractional

diffraction system with PT-symmetric potential has

not been explored. Indeed the manipulation of Airy

beam in such varying fractional system is an unex-

ploited practical issue that may be potential in

regulating the dynamics of light beam and then used

to fabricate optical devices.

In this work, we will investigate the evolution of

FEA beam in fractional system with diffraction

modulation and PT-symmetric potential. In the

absence of PT-symmetric potential, we firstly derive

the approximate analytical solutions of chirp-free FEA

beam with diffraction modulation and discuss the

inverse design of diffraction modulation according to

the predefined trajectory. Furthermore, through coher-

ent combining technique, we derive the analytical

solution of chirped FEA beam in real space and

spectral space and study qualitatively the relation

between the asymmetry and the chirp parameter. In the

presence of PT-symmetric potential, we present the

band structure modulated by fractional diffraction

based on a derived eigenvalue equation with diffrac-

tion modulation, and study numerically the asymmet-

ric conical evolution of chirp-free FEA beam. Finally,

for chirped FEA beam, we explore in detail the

competition effect between the chirp and the PT-

symmetric potential on the evolution of FEA beam.

The main structure of this work is as follows. In

Sect. 2, the theoretical model is introduced, and the

analytical and numerical results of chirp-free and

chirped FEA beams in absence of PT-symmetric

potential are presented in Sect. 3. In Sect. 4, a general

eigenvalue equation with diffraction modulation is

deduced and the band structure modulated by varying

fractional diffraction is demonstrated and the evolu-

tion of chirp-free and chirped FEA beams in presence

of PT-symmetric potential are studied numerically. In

Sect. 5, we draw the conclusion from this work.

2 Theoretical model

The propagation of beams in fractional diffraction

modulation system with PT-symmetric potential is

governed by a variable coefficient FSE [25, 40]:

i
oW x; zð Þ

oz
� 1

2
D zð Þ � o2

ox2

� �a
2

W x; zð Þ þ V xð ÞW x; zð Þ

¼ 0;

ð1Þ

whereW x; zð Þ is the complex envelope of beams, x and

z are the normalized transverse coordinate and prop-

agation distance, respectively. a 1\a� 2ð Þ is the Lévy
index, D zð Þ denotes the diffraction modulation. V xð Þ
represents PT-symmetric potential in the form of

V xð Þ ¼ V0 cos2 xð Þ þ iW0 sin 2xð Þ½ � with the depth V0

and the gain–loss coefficientW0. For the limiting case

a ¼ 2 and D zð Þ ¼ 1, Eq. (1) degenerates to the usual

SE that has been widely studied [38, 39]. To address

the effects of fractional diffraction modulation and

PT-symmetric potential on the evolution of FEA

beam, we consider the opposite limiting case a ¼ 1 in

the subsequent analysis.

3 In the absence of PT-symmetric potential

Firstly, we investigate the manipulation of FEA beam

under fractional diffraction modulation in the absence

of PT-symmetric potential, i.e. V xð Þ ¼ 0. In this case,

Eq. (1) is solvable for the limiting case a ¼ 1 through

Fourier transform (FT). In inverse space, Eq. (1) can

be written in the following form

i
oŴ k; zð Þ

oz
� 1

2
D zð Þ kj jŴ k; zð Þ ¼ 0; ð2Þ

where Ŵ k; zð Þ is the FT of W x; zð Þ and k is the spatial

frequency. Equation (2) is a linear equation and

possesses a general solution

Ŵ k; zð Þ ¼ Ŵ k; 0ð Þ exp � i

2
kj j
Z z

0

D fð Þdf
� �

; ð3Þ

where Ŵ k; 0ð Þ is the FT of the initial beam W x; 0ð Þ.
Using inverse FT, one can give the analytical expres-

sion of the solution of Eq. (2)

W x;zð Þ¼ 1

2p

Z 1

�1
Ŵ k;0ð Þexp � i

2
kj j
Z z

0

D fð Þdf
� �

exp ikxð Þdk:

ð4Þ

Thus, given an initial beam W x; 0ð Þ, an analytical

solution describing the evolution of the beam can be

obtained. Zang et al. reported the explicit Gaussian
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solution of Eq. (2) in Ref. [25], Zhang et al. presented

Gaussian solution for the special case of constant

coefficients of Eq. (2) in Ref. [21]. Until now,

analytical solution of Airy beam for Eq. (2) with

diffraction modulation has not been reported in the

literature. Below we will try to seek the analytical

solutions of FEA beam for Eq. (2) and to explore the

interesting dynamics of the FEA beam in fractional

diffraction modulation system. In the solving process

of unique and complex Airy beam, some special

treatments, such as reasonable assumption and

approximation, combining technique [46], will be

employed to deal with the asymmetry and cubical

phase of FEA beam in real and inverse spaces.

3.1 Analytical solution of chirp-free FEA beam

Considering an initial chirp-free FEA beam

W x; 0ð Þ ¼ Ai xð Þ exp axð Þ; ð5Þ

where Ai �ð Þ is Airy function and a a[ 0ð Þ is the

exponential apodization factor to ensure the contain-

ment of initial Airy tail [3–5]. For the sake of

simplicity, in the subsequent analysis, we take a ¼
0:1 if not specified.

Substituting the FT of Eq. (5)

Ŵ k; 0ð Þ ¼ exp �ak2
	 


exp
i

3
k3 � 3a2k � ia3
	 
� �

ð6Þ

into Eq. (4), we obtain

W x;zð Þ¼ 1

2p

Z 1

0

exp �ak2
	 


exp
a3

3

� �

exp i
k3

3
�a2kþkx

� �� �
exp � i

2
k

Z z

0

D fð Þdf
� �

dk

þ 1

2p

Z 0

�1
exp �ak2
	 


exp
a3

3

� �

exp i
k3

3
�a2kþkx

� �� �
exp

i

2
k

Z z

0

D fð Þdf
� �

dk :

ð7Þ

Taking the assumption that
R z
0
D fð Þdf is negative

for k[ 0 and positive for k\0, which is different

from the ones in [21, 25], and applying the Euler’s

formula, Eq. (7) can be approximately written as

W x; zð Þ � 1

4p

Z 1

�1
exp �ak2
	 


exp
i

3
k3 � 3a2k � ia3
	 


� �

exp ik x� 1

2

Z z

0

D fð Þdf
����

����

� �� 

dk

þ 1

4p

Z 1

�1
exp �ak2
	 


exp
i

3
k3 � 3a2k � ia3
	 


� �

exp ik xþ 1

2

Z z

0

D fð Þdf
����

����

� �� 

dk :

ð8Þ

Furthermore, employing the definitions of FT to

Eq. (8), we can arrive at the analytical solution of

chirp-free FEA beam of Eq. (2)

W x; zð Þ � 1

2
Ai xþ 1

2

Z z

0

D fð Þdf
� �

exp a xþ 1

2

Z z

0

D fð Þdf
� �� 


þ 1

2
Ai x� 1

2

Z z

0

D fð Þdf
� �

exp a x� 1

2

Z z

0

D fð Þdf
� �� 


:

ð9Þ

It is obtained from Eq. (9) that the initial chirp-free

FEA beam (5) evolves into two symmetric Airy-type

sub-branches during propagation. The terms

	 1
2

R z
0
D fð Þdf in Eq. (9) describe the trajectories of

the main lobes of two sub-branches, which suggest

that the acceleration of Airy beam can be adjusted by

the diffraction modulation D zð Þ. Figure 1 depicts the

evolution of chirp-free FEA beam with

DðzÞ ¼ d1 1þ n cosðXzÞ½ �, where d1, n and X are the

parameters of longitudinal diffraction modulation. In

order to compare the dynamics of chirp-free FEA

beam under a 6¼ 1 and a ¼ 1, firstly, we present the

amplitude evolution for a ¼ 1:8,1.5, 1.3, 1 in Fig. 1a-

d. Obviously, the chirp-free FEA beam is always

accelerated and split regardless of the value of a.
However, the smaller the a, the more evident the split,

and the weaker the diffraction effect. It is clear to see

that when a ¼ 1, the numerical evolution of the chirp-

free FEA beam in Fig. 1d is in agreement with the

analytical one in Fig. 1e that is plotted from Eq. (9).

According to Eq. (9), it is easy to deduce that the main

lobes of two sub-branches travel along the cosine

trajectories x ¼ 	 d1
2

zþ n
X sin Xzð Þ

� �
, which is

depicted by the green solid curves in Fig. 1d and e.

It is noted that a collision of two sub-branches occurs

and it is highly dependent on the diffraction modula-

tion amplitude n. From the above trajectory expres-

sion, one can easily deduce that the two main lobes of

sub-branches undergo a cross at x ¼ 0, i.e.
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z ¼ � n
X sin Xzð Þ. This implies a collision condition of

max � n
X sin Xzð Þ

� �

 z. In other words, when n

X

�� ��
 z at

z ¼ nT þ T
4

for n
X\0 or z ¼ nT þ 3T

4
for n

X [ 0

n ¼ 0; 1; 2. . .; T ¼ 2p
X

	 

, the collision occurs. Taking

the example of n
X [ 0, only when n
 2 nþ 3

4

	 

p, the

collision of the two main lobes can occur, moreover,

when 3
2
p� n\ 7

2
p 7

2
p� n\ 11

2
p

	 

, one or two (three

or four) cross-points are formed, as shown in the left of

Fig. 1f. It is noted that in Fig. 1f, f zð Þ ¼ z (black solid

line) and f ðzÞ ¼ � n
X sin Xzð Þ (green, blue and red solid

curves) depict the collision relation z ¼ � n
X sin Xzð Þ.

The collision trajectories of the two main lobes for

different n are clearly illustrated in the right of Fig. 1f.

The controllable split and collision features of two

main lobes may be useful in optical splitter and switch.

Different from the symmetric splitting propagation

in real space shown in Fig. 1d and e, the chirp-free

FEA beam follows an invariable spectrum evolution

pattern in inverse space, as clearly displayed in Fig. 1g

and 1h. In fact, this can be verified from Eqs. (3) and

(6) that the Fourier amplitude spectrum of the chirp-

free FEA beam during propagation is in a Gaussian

form

Ŵ k; zð Þ ¼ exp �ak2
	 


exp
a3

3

� �
exp i

k3

3
� a2k � 1

2
kj j
Z z

0

D fð Þdf
� �� 


:

ð10Þ

According to Eq. (10) and Parseval’s theorem, the

exact power of the beam can be described by

Fig. 1 Numerical evolutions a a ¼ 1:8, b a ¼ 1:5, c a ¼ 1:3, d
a ¼ 1 and e analytical evolution (corresponding to d) of chirp-
free FEA beam with diffraction modulation

DðzÞ ¼ d1 1þ n cos Xzð Þ½ �, where d1 ¼ 0:5; n ¼ 5; X ¼ 0:2,
and green solid curves show the trajectories of two main lobes;

f collision relation (the left) and trajectories (the right) of two

main lobes for n ¼ 3; 5; 12; black line marks f zð Þ ¼ z; g and

h Fourier spectra corresponding to d and e, respectively; i Power
evolution. (Color figure online)
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Pexact ¼
Z þ1

�1
W x; zð Þj j2dx ¼ 1

2p

Z þ1

�1
Ŵ k; zð Þ
�� ��2dk

¼ 1

2
ffiffiffiffiffiffiffiffi
2ap

p exp
2a3

3

� �
:

ð11Þ

And the approximate power can be derived from

Eqs. (8) and (9)

Papprox ¼
1

4
ffiffiffiffiffiffiffiffi
2ap

p exp
2a3

3

� �
1þ exp � 1

8a

Z z

0

DðfÞdf
� �2

" #( )

:

ð12Þ

Figure 1i shows the comparison of the exact power

(11), approximate power (12) and the numerical power

by numerically solving Eq. (1) with V xð Þ ¼ 0. It is

observed from Fig. 1i that the numerical power

remains unchanged and exhibits an excellent agree-

ment with the exact power, but there is a deviation

between the numerical power and the approximate one

at the splitting regions of two sub-branches. This

phenomenon can be explained by the difference in

width between the numerical evolution and the

analytical one in real space [25]. However, at the

collision positions, the interaction of the sub-branches

results in the recovery of approximate power to the

initial level. This indicates that the FEA beam still

maintains the characteristics of non-diffraction even

though it is split into two colliding sub-Airy ones in

fractional diffraction modulation system.

Based on the analytical expression of chirp-free

Airy solution (9), an inverse problem can be solved

through a reverse thinking [5]. Namely, one can design

a diffraction modulation D zð Þ through predefining the

trajectories x zð Þ. In fact, in accordance with the

trajectory expression x zð Þ ¼ 	 1
2

R z
0
D fð Þdf, the

diffraction modulation DðzÞ can be inversely engi-

neered by the predefined trajectory x zð Þ,

D zð Þ ¼ 2x0 zð Þ; x 0ð Þ ¼ 0; ð13Þ

Typical trajectories of Airy beam may follow

power, sinusoidal, hyperbolic laws, etc.[5]. We first

consider a power law trajectory by assuming

xðzÞ ¼ 	 b z� z0ð Þcþb0½ �; ð14Þ

where b0 is a constant to ensure xð0Þ ¼ 0.

Substituting Eq. (14) into Eq. (13), it is easy to

deduce that the diffraction modulation is in the form of

D zð Þ ¼ 2bc z� z0ð Þc�1
. Figure 2a shows the evolution

of the chirp-free FEA beam modulated by power law

fractional diffraction modulation. Figure 2b plots the

velocity and acceleration of the main lobe of the right

sub-branch under different power law fractional

diffraction modulation. Figure 2c and d present the

beam evolutions with two other typical trajectories in

the forms of x zð Þ ¼ 	 2arc sin th z� 4ð Þ½ �þf 2arc

sin th 4ð Þg and x zð Þ¼	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z�4ð Þ2þ1

q
�1

� �
H z�4ð Þ,

respectively, where H �ð Þ denotes the Heaviside step

function. The corresponding diffraction modula-

tions take the forms of D zð Þ¼4sech z�4ð Þ and

D zð Þ¼2 z�4ð ÞH z�4ð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z�4ð Þ2þ1

q
, respectively.

Therefore, one can engineer the fractional diffraction

modulation system according to the predefined

trajectories.

3.2 Coherent combining solution of chirped FEA

beam

In practice, chirp plays an outstanding role in the

compression, amplification and generation of short

pulses in optical system. Along this line, a study of

chirp in fractional system is very essential. In this

section, we introduce an initial chirp to explore the

effect on the dynamics of FEA beam in fractional

system with varying diffraction.

For an initial chirped FEA beam

W x; 0ð Þ ¼ Ai xð Þ exp axð Þ exp ibx2
	 


; ð15Þ

where b is the chirp parameter, we can theoretically

obtain the chirped FEA solution of Eq. (2) by inserting

the FT of Eq. (15) into Eq. (4)

W x;zð Þ¼ 1

2p

Z 1

�1

ffiffiffiffiffi
i
p
b

r
Ai

kþ ia

2b
� 1

16b2

� �
exp

4abk�a

8b2

� �

exp �ik2

4b
þ ik

1

8b2
þx

� �
� i

96b3
þ ia2

4b

� �
exp � i

2
kj j
Z z

0

D fð Þdf
� �

dk:

ð16Þ

However, due to the asymmetry of Airy function

and the complexity of the integral in Eq. (16), it is

difficult to give explicit evolution expression of the

chirped FEA beam. Up to now, the explicit solution of

chirped FEA beam in fractional diffraction system has

not been reported in literatures. We notice that the

FEA beam can be composed by combining multiple

off-axis coherent Gaussian beams [46], hence, in order
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to obtain the explicit expression of chirped FEA

solution, here we will employ the coherent combining

technique to generate the initial chirped FEA beam,

W x; 0ð Þ ¼
Xm

n¼1

exp ipð Þ½ �nAn exp � x� bnð Þ2

w2
n

" #

exp ibx2
	 


;

ð17Þ

where An,bn,wn denote the amplitude, central position

and waist width of the nth-order Gaussian beam,

respectively. exp ipð Þ½ �n denotes the phase jump

between the neighboring Gaussian beams. Exponen-

tial apodization of Airy beam can be achieved by

fitting the parameters of An,bn,wn.

Figure 3 displays the curves of initial chirped FEA

beams generated by the coherent combining technique

and described by Eq. (15) with a ¼ 0:1 and b ¼ 2,

where the inset is the fitting parameters An, bn, wn of

off-axis coherent Gaussian beams. Obviously, the

amplitude and phase of the coherent combining Airy

beam (CC-Airy beam) are well consistent with the one

described by Eq. (15).

Taking the FT of initial CC-Airy beam with chirp

(17)

Ŵ k; 0ð Þ ¼
Xm

n¼1

exp ipð Þ½ �nAnwn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

1� ibw2
n

r
exp ibn bbn � kð Þ½ �

exp �w2
n 2bbn � kð Þ2

4 1� ibw2
n

	 


" #

;

ð18Þ

and substituting it into Eq. (4), the coherent combin-

ing solution of the chirped CC-Airy beam of Eq. (2)

can be written as

Fig. 2 Diffraction modulation of chirp-free FEA beams with

predefined trajectories of a power law x ¼ 	 z� 4ð Þ2�16
h i

, c

composite arcsine x ¼ 	 2arc sin th z� 4ð Þ½ � þ 2arc sin th 4ð Þf g

and d piecewise x ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 4ð Þ2þ1

q
� 1

� �
H z� 4ð Þ; b is the

velocity and acceleration of the right sub-branch of chirp-free

FEA beam corresponding to awith different power law indexes.

(Color figure online)
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W x; zð Þ ¼

Xm

n¼1

exp ipð Þ½ �nAn exp ibbn 2xþ
Z z

0

D fð Þdf� bn

� �� 


exp � 1� ibw2
n

w2
n

xþ 1

2

Z z

0

D fð Þdf� bn

� �2( )

þ hþ x; zð Þ; b[ 0

Xm

n¼1

exp ipð Þ½ �nAn exp ibbn 2x�
Z z

0

D fð Þdf� bn

� �� 


exp � 1� ibw2
n

w2
n

x� 1

2

Z z

0

D fð Þdf� bn

� �2( )

þ h� x; zð Þ; b\0

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

;

ð19Þ

where

h	 x; zð Þ ¼ 	
Xm

n¼1

exp ipð Þ½ �n Anwn

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� ibw2

n

	 
q

exp ibbn 2x�
Z z

0

D fð Þdf� bn

� �� 
Z þ1

2bbnj j

exp 	ik x� 1

2

Z z

0

D fð Þdf� bn

� �� 

exp � w2

nk
2

4 1� ibw2
n

	 


" #

dk

�
Xm

n¼1

exp ipð Þ½ �n Anwn

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� ibw2

n

	 
q

exp ibbn 2xþ
Z z

0

DðfÞdf� bn

� �� 
Z þ1

2bbnj j

exp 	ik xþ 1

2

Z z

0

D fð Þdf� bn

� �� 

exp � w2

nk
2

4 1� ibw2
n

	 


" #

dk

ð20Þ

with

h	 x; zð Þj j �
Xm

n¼1

Anwnffiffiffi
p

p 1

1þ b2w4
n

 !1
4 Z þ1

2bbnj j

exp � w2
nk

2

4 1þ b2w4
n

	 


" #

dk ¼
Xm

n¼1

An 1þ b2w4
n

	 
1
4erfc

bbnj jwnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2w4

n

q

0

B@

1

CA;

ð21Þ

in which erfcð�Þ denotes the complementary error

function.

It should be pointed out that in Eq. (20), h	 x; zð Þ is
non-neglectable due to the restraint between the lower

limit 2bbnj j of integral and the integrand term

exp �w2
nk

2
�
4 1� ibw2

n

	 
� �
. As a consequence, the

chirped CC-Airy beam will evolve into two asymmet-

ric sub-branches no matter what the value of the chirp

parameter, which is quite different from the results for

linear chirp in Refs. [21, 25]. Figure 4a1, a2 and b1, b2

depict the analytical evolution governed by Eqs. (19)

and (20) and the directly numerical simulations of the

initial chirped FEA beam (15). From the analytical and

numerical results, it is clearly seen that the chirped

FEA beam splits into two sub-branches with different

intensities, moreover, the positive chirp leads to a

suppression of the right sub-branch [see Fig. 4a1, b1],

while the negative chirp gives rise to a suppression of

the left sub-branch [see Fig. 4a2, b2]. Also, the

Fig. 3 Comparison of the

initial CC-Airy beam and

the initial chirped Airy beam

(15) with a ¼ 0:1; b ¼ 2.

Inset table is the fitting

parameters An; bn; wn; of
off-axis coherent Gaussian

beams for the CC-Airy

beam. (Color figure online)
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amplitude profiles at typical distances of z ¼ 0, 40 and

70 verify our analytical and numerical findings, which

are depicted by the white solid curves in Fig. 4a and b.

Interestingly, this asymmetric split in real space leads

to an Airy-like Fourier spectrum in inverse space over

the propagation, as shown in Figs. 4c1 and c2, which

are quite different from the chirp-free ones shown in

Fig. 1d and e.

In fact, the asymmetry of two sub-branches resulted

from the initial chirp can be explained qualitatively by

the h	ðx; zÞ in Eq. (19). The maximum of h	ðx; zÞj j
can be estimated as

max h	ðx; zÞj jð Þ ¼
Xm

n¼1

An 1þ b2w4
n

	 
1
4erfc

bbnj jwnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2w4

n

q

0

B@

1

CA:

ð22Þ

Combining Eq. (22) with Eqs. (19) and (20), one

can deduce that h	ðx; zÞ in (19) and (20) plays a key

role in the asymmetric evolution of the chirped CC-

Airy beam. The relationship of the max h	ðx; zÞj jð Þ and
the chirp parameter b is plotted in Fig. 5a. With the

increasing of bj j, max h	ðx; zÞj jð Þ rapidly deceases to a
minimum critical value at certain bj j [see points ‘B’

Fig. 4 Evolution of the chirped FEA beam: a1 and a2 analytical
CC-Airy beam, b1 and b2 the corresponding numerical results;

c1 and c2 the Fourier spectra in inverse space. In a1, b1 and a2,

b2, the green curves show the trajectories of two main lobes, and

the white curves plot the beam amplitudes at z ¼ 0, 40, and 70.

(Color figure online)

Fig. 5 a The relationship of max h	ðx; zÞj jð Þ and b for different apodization factor a. The points ‘A’, ‘B’ and ‘C’ respectively

correspond to b ¼ 0; �0:47; 0:47; b power evolution of the positive chirped Airy beam. (Color figure online)

123

Dynamics and manipulation of Airy beam 4585



and ‘C’ in Fig. 5a], and then slowly increases.

Moreover, by analyzing the expressions of Eqs. (19)

and (20), it is found that the larger the max h	ðx; zÞj jð Þ,
the more comparable the two sub-branches of the

chirped CC-Airy solution (19). Hence, at point ‘A’, i.e.

b ¼ 0, the sub-branches are symmetric, which corre-

sponds to the chirp-free case in Fig. 1, while at points

‘B’ and ‘C’ where max h	ðx; zÞj jð Þ is minimum at

bj j ¼ 0:47, the first term in the solution (19) will

dominate the evolution of the chirped CC-Airy beam,

which gives rise to more asymmetry of two sub-

branches. Furthermore, it is found from Fig. 5a that

the critical values at points ‘B’ and ‘C’ are almost

same, i.e., bj j ¼ 0:47 for different apodization factor a.

In addition, the power evolution of the positive

chirped Airy beam is shown in Fig. 5b. It is clear to

see that the total power is conserved, while the power

of two sub-branches is apparently asymmetric, accom-

panying with an energy exchange at the collision

position.

4 In the presence of PT- symmetric potential

In the presence of PT-symmetric potential, when the

FEA beam propagates in the fractional system (1) with

diffraction modulation, Eq. (1) is non-integrable and

has no analytical Airy solution. Therefore, we will

study numerically the innovative characteristics aris-

ing from the interaction between the modulated

fractional diffraction and the PT-symmetric potential,

which will be demonstrated as below.

4.1 Band structure

Due to the diffraction modulation in Eq. (1), the band

spectrum for the periodic PT-symmetric potential is

the function of z and k. Hence we assume the

stationary solution of Eq. (1) is of the form

/n x; kð Þ exp iln k; zð Þ z½ �, where /n x; kð Þ represents

the Bloch mode and ln k; zð Þ is the propagation

constant. According to the Floquet-Bloch theorem

[47], /n x; kð Þ can be assumed as /n x; kð Þ ¼
qk xð Þ exp ikxð Þ with qk xð Þ ¼ qk xþ Dð Þ, where D is

the period of the PT-symmetric potential. Using plane-

wave expansion method,qk xð Þand V xð Þcan be written

as qk xð Þ ¼
P

n
Bn exp iKnxð Þand V xð Þ ¼

P

m
Cm exp

iKmxð Þ, respectively, where Kj ¼ 2pj=D(j ¼ n; m)

andCm ¼ 1
D

R
D V xð Þ exp �iKmxð Þdx. Substituting these

expressions into Eq. (1) with a ¼ 1 and multiplying

with exp �i k þ Kq

	 

x

� �
, and then taking the integral

over x 2 �1; 1ð Þ, one can derive the eigenvalue

problem

� 1

2
D zð Þ k þ Kq

�� ��Bq þ
X

m

CmBq�m ¼ lþ zl0z
	 


Bq:

ð23Þ

It is noted that Eq. (23) represents a general

eigenvalue problem dependent on the diffraction

modulation, and importantly, the eigenvalue equation

can be applied to investigate the band structure of any

varying fractional systems with periodic potential. By

numerically solving Eq. (23), the band structure of the

system (1) can be obtained. Figure 6 depicts the band

structures for the periodic PT-symmetric potential

when D zð Þ ¼ d1 1þ n cos Xzð Þ½ �. Clearly, the band

spectra are highly dependent on the diffraction mod-

ulation D zð Þ, which is different from the previous

reports in Refs. [38–41]. It can be seen from Fig. 6 that

the band spectra are periodically modulated along the

propagation distance z due to the periodic diffraction

modulation, however, the band spectra still remain the

substantive characteristics at a certain propagation

distance. To be specific, below the PT threshold

Wth
0
¼ 0:5, the band spectrum is entirely real and all

the forbidden gaps are open, as shown in Fig. 6a; at the

threshold, the first two bands merge at the edges of the

Brillouin zone and the first band gap closes, which is

described in Fig. 6b; above the threshold, as shown

Fig. 6c and d, the spontaneous symmetry breaking

occurs, as a result, the band spectrum is complex with

an oval-like double-valued band structure in real parts.

It is noted that at a certain propagation distance, the

band structure near the center of the Brillouin zone is

linear, which will result in a constant group velocity

and a conical spread in the fractional system with PT-

symmetric potential [40, 41].

4.2 Chirp-free FEA beam

In the PT-symmetric system (1) with fractional

diffraction modulation, unique characteristics of Airy

beam and fractional diffraction modulation will result

in some novel and interesting phenomena, which are

quite different from the dynamics of Gaussian beam in

usual PT-symmetric system [38, 39] and the PT-
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symmetric system with fractional constant coefficient

diffraction [40, 41]. Figure 7 depicts the evolution

of chirp-free FEA beam in the PT-symmetric

system with fractional diffraction modulation

D zð Þ ¼ d1 1þ n cos Xzð Þ½ �. For weak diffraction mod-

ulation, i.e. n � 1, the PT-symmetric potential plays a

dominant role in the evolution of chirp-free FEA

beam, as shown in Fig. 7a1-c1, in which it can be seen

that the beam evolves in an asymmetrical conical

form. Also, it is observed from Fig. 7a1 and b1 that the

beam possesses more energy at the PT threshold than

that below the threshold, while its power is asymmet-

rically and drastically amplified above the threshold as

a result of the complex band spectrum after PT

Fig. 6 Band structures governed by Eq. (23) with D zð Þ ¼ d1 1þ n cos Xzð Þ½ � for a W0 ¼ 0:45, b W0 ¼ 0:5, c and d W0 ¼ 0:54. Other
parameters: d1 ¼ 2;n ¼ 0:2;X ¼ 1: (Color figure online)

Fig. 7 Evolution of chirp-free FEA beam in the periodic PT-

symmetric system with fractional diffraction modulation. Top

row n ¼ 0:01ð Þ and bottom row n ¼ 0:4ð Þ: a1, a2 W0 ¼ 0:45;

b1, b2 W0 ¼ 0:5; c1, c2 W0 ¼ 0:54; d1 and d2 normalized

Fourier spectra corresponding to c1 and c2, respectively. Other
parameters: V0 ¼ 2; d1 ¼ 3; X ¼ 0:5p. (Color figure online)
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symmetry breaking, as plotted in Fig. 7c1. Moreover,

some interference fringes appear near the left edge of

conical evolution due to the oscillating tails of Airy

beam, and the energy at the right edge of conical

evolution is stronger than that at the left edge because

main lobe of Airy beam possesses larger intensity. The

above two features arising from unique characteristics

of Airy beam are markedly different from the

symmetric conical diffraction of Gaussian beam

[40, 41]. For strong diffraction modulation, the

chirp-free FEA beam conically evolves along unidi-

rectional bend channels below and at the PT threshold,

while above the PT threshold, the rapidly amplified

chirp-free FEA beam diffracts conically along the

modulated straight channels, as shown in Fig. 7a2-c2.

In order to deeply understand the evolution of FEA

beam in PT-symmetric system with fractional diffrac-

tion modulation, we further discuss the Fourier

spectrum in inverse space by taking the FT of

Eq. (1) with a ¼ 1

i
oŴ k; zð Þ

oz
þ 1

2
V0 � kj jD zð Þ½ �Ŵ k; zð Þ

þ V0

2
0:5�W0ð ÞŴ k þ 2; zð Þ

þ V0

2
0:5þW0ð ÞŴ k � 2; zð Þ

¼ 0: ð24Þ

Obviously, the Fourier spectrum in Eq. (24) is

discrete in the periodic PT-symmetric potential and

the discrete spectra occur coupling at k þ 2,k and k �
2 during propagation [40]. Figure 7d1 and d2 plot the

spectra evolution of chirp-free FEA beam for the case

above the PT threshold under weak and strong

diffraction modulations, respectively. It is clear to

see that for both weak and strong modulations, at the

beginning of propagation, the spectra are wide and

there is much interference between different k because

the Fourier spectrum (6) of chirp-free FEA beam is in a

wide Gaussian form. Moreover, the discrete coupling

spectra appear increased intensity at k and k � 2,

which can be explained by Eq. (24). For a given V0,

above the PT threshold, i.e. W0 [ 0:5, the magnitude

of discrete spectrum is larger at k � 2 than that at

k þ 2, resulting in that the spectral coupling at k and

k � 2 is dominant during propagation. Compared

Fig. 7d1 with d2, it is noted that for strong diffraction

modulation the dominated spectrum components

appear periodic features [see Fig. 7d2], which arises

from that the discrete spectrum coefficient is depen-

dent on the diffraction modulation DðzÞ.

4.3 Chirped FEA beam

In Sect. 3, we demonstrated analytically and numer-

ically the effect of chirp on the evolution of FEA beam

in the system (1) without PT-symmetric potential.

Here we emphasize the competition effect of the chirp

and the PT-symmetric potential on the evolution of

FEA beam at the PT threshold under the fractional

diffraction modulation D zð Þ ¼ d1 1þ n cos Xzð Þ½ �, as
shown in Fig. 8. By comparing Fig. 8a and b, it is

clearly seen that the smaller depth V0 of PT-symmetric

potential induces the weaker conical diffraction effect;

while positive initial chirp results in energy mainly

flowing to the left edge of the conical evolution. As the

depth V0 is increased, the conical diffraction effect is

obviously enhanced, accompanying with similar

diffraction fringes with that in Fig. 7b2. Different

from Fig. 7b2, the positive initial chirp yields an

enhanced interference at left edge between the conical

diffraction fringes and the tail interference fringes, as

shown in Fig. 8a and b. From Fig. 8c and d, it can be

observed that negative initial chirp gives rise to strong

interference fringes near the right edge of the conical

evolution. Moreover, the increased depth V0 rein-

forces the conical diffraction fringes. It is noteworthy

Fig. 8 Evolution of chirped FEA beam at the PT threshold: a b ¼ 2; V0 ¼ 1; b b ¼ 2; V0 ¼ 2; c b ¼ �2; V0 ¼ 1; d b ¼ �2; V0 ¼ 2.

Other parameters: d1 ¼ 3; n ¼ 0:4; X ¼ 0:5p. (Color figure online)
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that the competition between the negative chirp and

the PT-symmetric potential will hardly influence the

tail interference fringes at the left of the conical

evolution, which is different from the case with

positive chirp in Fig. 8a and b. This difference can be

attributed to the inherent asymmetry of Airy beam.

4.4 With different diffraction modulations

Finally, we discuss the evolution of chirped FEA beam

in PT-symmetric system (1) with different fractional

diffraction modulations. Figure 9a-c show the nor-

malized evolution of chirped FEA beam at the PT

threshold under three typical diffraction modulations

�D zð Þ ¼ 4sech z� z0ð Þ ,`D zð Þ¼2 z�z0ð ÞH z�z0ð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z0ð Þ2þ1

q
, in whichH �ð Þ denotes the Heaviside

step function,´D zð Þ¼4ðz�z0Þ [5]. It is obvious to see
that hyperbolic secant, Heaviside step and linear

diffraction modulations can induce straight, discrete

conical and parabolic channels of propagation, respec-

tively after a distance of z0. Therefore, one can

manipulate the propagation channels of FEA beam

along the desired paths by choosing diffraction

modulation. It should be pointed that the designed

propagation channels are also related to the gain/loss

coefficientW0 of PT-symmetric potential. Figure 9d-f

present the normalized evolution of chirped FEA

beam for DðzÞ¼4ðz�z0Þ with z0¼0 under different

W0. It can be deduced by comparing Fig. 9d-f that the

gain/loss coefficientW0 affects the energy distribution

of the beam at the interference channels.

5 Conclusion

In conclusion, we have studied the evolution of FEA

beam in fractional system with diffraction modulation

and PT-symmetric potential. In the absence of PT-

symmetric potential, firstly, we presented the approx-

imate analytical solution of chirp-free FEA beam.

Based on the analytical solution, we investigated

analytically and numerically the split and collision of

chirp-free FEA beam under diffraction modulation,

and discussed the possibility of inverse design of

diffraction modulation according to the predefined

trajectory. It is found that the chirp-free FEA beam

splits into two symmetric sub-branches during prop-

agation and the collision of two sub-branches highly

depends on the amplitude of diffraction modulation.

Fig. 9 Top row: evolution of chirped FEA beams under typical

diffraction modulations in PT-symmetric system: a
D zð Þ ¼ 4sech z� z0ð Þ; b D zð Þ ¼ 2 z� z0ð ÞH z� z0ð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� z0ð Þ2þ1

q
; c DðzÞ ¼ 4 ðz� z0Þ with z0 ¼ 4. Bottom

row: evolution of chirped FEA beams under different gain/loss

coefficients W0: d W0 ¼ 0:45; e W0 ¼ 0:5; f W0 ¼ 0:54 for

DðzÞ ¼ 4ðz� z0Þwith z0 ¼ 0. Other parameters: V0 ¼ 4;b ¼ 2.

(Color figure online)
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Furthermore, through coherent combining technique,

we derived the analytical solution of chirped FEA

beam, and investigated analytically and numerically

the asymmetric evolution of chirped FEA beam in real

space and spectral space, and discussed qualitatively

the relation between the asymmetry and the chirp

parameter. The results show that the chirp dominates

the asymmetry of two sub-branches. In the presence of

PT-symmetric potential, we investigated the band

structure modulated by varying fractional diffraction

based on a derived eigenvalue equation with diffrac-

tion modulation, and then studied numerically the

asymmetric conical evolution of chirp-free FEA beam

in the PT-symmetric system with weak and strong

diffraction modulations. It is found that under strong

diffraction modulation, the chirp-free FEA beam

asymmetrically evolves along unidirectional bend

channels below and at the PT threshold, while above

the PT threshold, the FEA beam is rapidly amplified

and diffracts conically along the modulated straight

channels. For chirped FEA beam, the competition

effect between the chirp and the PT-symmetric

potential on the beam evolution is explored in details.

This work provides a method for inverse design of the

fractional diffraction modulation system and the

presented results are potential in the fabrication of

optical splitter and switch.
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47. Bloch, F.: Über die quantenmechanik der elektronen in

kristallgittern. Z. Physik 52(7–8), 555–600 (1929)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)

holds exclusive rights to this article under a publishing

agreement with the author(s) or other rightsholder(s); author

self-archiving of the accepted manuscript version of this article

is solely governed by the terms of such publishing agreement

and applicable law.

123

Dynamics and manipulation of Airy beam 4591


	Dynamics and manipulation of Airy beam in fractional system with diffraction modulation and PT-symmetric potential
	Abstract
	Introduction
	Theoretical model
	In the absence of PT-symmetric potential
	Analytical solution of chirp-free FEA beam
	Coherent combining solution of chirped FEA beam

	In the presence of PT- symmetric potential
	Band structure
	Chirp-free FEA beam
	Chirped FEA beam
	With different diffraction modulations

	Conclusion
	Author contribution
	Data availability
	References




