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 A B S T R A C T

Background and Objective: High-precision segmentation of pathological images is a challenging task in 
the field of medical image processing. Hyperspectral microscopic imaging offers a distinct advantage in 
histopathological image segmentation due to its abundance of spectral and spatial data.
Methods: Here, a Dule-Channel Multi-Scale Spatial-Spectral Feature Fusion Network (DC-MSSFF Net) is 
proposed for semantic segmentation of cholangiocarcinoma hyperspectral images (HSI). The DC-MSSFF Net 
is composed of two parallel channels, graph-within-graph (GwG) and multi-scale CNN. The GwG can greatly 
reduce the computational burden while establishing the spatial context relationship of the HSI image. The 
multi-scale CNN channel is able to fine-tune the segmented edges of the HSI images at the pixel-level based 
on hyperspectral information in the depth dimension. Afterwards, the segmentation results are achieved by 
fusing the features from the two channels. Furthermore, an ensemble-based framework is applied to further 
improve the performance of the model.
Results: The image segmentation evaluation indexes such as dice similarity coefficient (Dice) of the Cholan-
giocarcinoma HSI data can reach 70.47, which is much higher than the SOTA method and RGB-based image 
segmentation methods.
Conclusion: The superior performance of the DC-MSSFF network pioneers the inductive learning task of deep 
frameworks for semantic segmentation of high-resolution hyperspectral image (HR-HSI).
1. Introduction

Cholangiocarcinoma is the second most common primary hepatic 
malignancy after hepatocellular carcinoma worldwide, accounting for 
approximately 15 of all primary liver tumors [1,2]. The incidence and 
mortality rates of cholangiocarcinoma have increased steadily over 
the past decades. To date, the histopathological examination is still 
considered to be the ‘‘gold standard’’ for the diagnosis and treatment of 
primary tumors, including cholangiocarcinoma. However, the diagnosis 
of cholangiocarcinoma is suffered from its insidious clinical features, 
low specificity of most diagnostic modalities, and lack of absolute 
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diagnostic criteria. This is mainly because traditional pathology images 
can only provide two-dimensional spatial information, which limits the 
accuracy improvement of image processing algorithms. 

Hyperspectral microscopic imaging (HMI) is an advanced 3D imag-
ing technology that combines optical microscopy and hyperspectral 
imaging (HSI) to obtain both 2D image and 1D spectral informa-
tion in a hyperspectral data cube. This method not only records the 
spatial feature of a sample, but also reveals its chemical properties 
through discrete/continuous spectrum of the reflected light at each 
pixel of the image. Compared with the traditional 2D pathology images,
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 data mining, AI training, and similar technologies. 
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hyperspectral data cube provides more comprehensive lesion informa-
tion of tissues across a wide spectrum of light rather than just assigning 
primary colors (red, green and blue) to each pixel. Therefore, it has 
shown great potential for applications in computational pathology, 
such as pathological image classification and segmentation. Meanwhile, 
Silvia Seidlitz and Jan Sellner [3] have also demonstrated that im-
age segmentation results are more accurate based on HSI modality 
rather than RGB images through the U-Net. Typically, it also pro-
vides more possibilities for the diagnosis of intractable lesions such as 
cholangiocarcinoma image segmentation.

2. Related works

2.1. Machine learning-based methods

For hyperspectral image segmentation tasks, the mainstream re-
search includes methods based on machine learning [4] and approaches 
related to deep learning [4,5]. Over the past decade, hyperspectral im-
age classification and segmentation have been primarily based on ma-
chine learning and its related methods. In these studies, support vector 
machine (SVM), random forests (RF), K-Nearest Neighbors (KNN) [6], 
linear discriminant analysis (LDA) [7] and other classic image process-
ing techniques [8] are employed for hyperspectral pathological image 
segmentation. Here, methods such as principal component analysis 
(PCA) [9,10], independent component analysis (ICA) [10] and non-
negative matrix factorization (NMF) [8] are used for dimensionality 
reduction in the preprocessing stage to avoid the curse of dimensional-
ity.

Specifically, Nathan et al. [11] combined hyperspectral imaging 
technology and SVM classifier together to distinguish the different types 
of cancer, where PCA was used as a feature extraction and down-
scaling method in hyperspectral image preprocessing. In 2019, Neeraj 
Kumar [8] et al. proposed a semi-supervised approach for processing 
hyperspectral pathology images, in which they utilized NMF for dimen-
sion reduction and preprocessing. Subsequently, hierarchical clustering 
was harnessed as a classifier to perform pixel-level image segmentation. 
The feasibility of the method was rigorously evaluated and validated 
on a mid-infrared colon pathological image dataset. It also provides 
deep insights into the importance of using 𝑘-means for pre-clustering, 
illustrating the merits of hierarchical clustering compared with SVM 
and RF, especially in the presence of substantial intra-class variation 
and limited labeled samples. Lu [12] et al. also applied hyperspectral 
imaging technology to the field of digital pathology, by establishing 
the correlation between selected histopathological features and spectral 
signatures with Spearman’s rank correlation coefficient, which attempts 
to distinguish tongue neoplasia from normal tissues in early stage. 
However, these machine learning approaches have limited performance 
on various types of tasks due to the specific feature representations 
obtained manually.

2.2. Deep learning-based methods

2.2.1. CNN-based approaches
Deep learning has demonstrated strong capabilities in extracting 

hierarchical semantic features by integrating both spatial and spectral 
dimensions of hyperspectral data, significantly improving segmenta-
tion and classification accuracy. Although initially developed for RGB 
imagery, its application to hyperspectral data processing has shown 
considerable promise and has attracted growing attention in fields such 
as remote sensing [13–19] and biomedicine [20,21]. In early works, 
Li et al. [22] explored the use of 2D CNNs to derive deep spatial 
representations from hyperspectral remote sensing data, subsequently 
employing support vector machines (SVMs) for pixel-level classifica-
tion. However, this approach faced inherent limitations in capturing 
spectral information — a critical aspect of hyperspectral data — which 
2 
notably affected classification performance. To address this shortcom-
ing, Chen et al. [23] advanced the field by introducing 3D CNNs that 
jointly extract spatial and spectral features. While effective, this method 
introduced significant computational challenges due to the high dimen-
sionality of HSI. Afterwards, Swalpa Kumar Roy et al. [24] proposed 
HybridSN, a modular architecture that combines spectral-spatial 3D 
convolutions with subsequent 2D spatial processing. This hybrid design 
achieves higher classification accuracy than standalone 3D CNN models 
while reducing computational costs, offering a more efficient balance 
between feature complexity and performance. It is important to note 
that in these approaches, hyperspectral images are generally treated 
as static 3D data cubes, ignoring the continuous spectral information 
contained within each pixel. Each pixel, in fact, comprises a reflectance 
sequence that forms a unique spectral signature. Recognizing this, 
Wang et al. [25] proposed the ASSMN framework, which strategically 
integrates LSTM module to simulate multi-scale spectral and spatial 
structures. This approach emphasizes the scientific importance of cap-
turing spectral sequences, enabling a deeper exploration of the intrinsic 
structure of hyperspectral data.

However, these CNN-based predictive methods are all based on 
transductive learning due to the inherent image properties and specific 
tasks in remote sensing. While in the medical field, transductive learn-
ing approaches are relatively meaningless and have poor generaliza-
tion ability, when directly applied to medical image classification and 
segmentation tasks. Contrastly, inductive learning approaches are ob-
viously more applicable and significant for processing high-resolution 
hyperspectral medical images.

2.2.2. UNet-based approaches
In the field of medical image segmentation, UNet and its vari-

ants [26–29] have achieved great success on images in RGB modal-
ity by fusing multi-scale spatial features from up-sampling layers to 
corresponding down-sampling layers. These methods have been ap-
plied to the segmentation of hyperspectral medical images and can 
be viewed as an inductive learning task. For instance, Stojan Tra-
janovski et al. [30] introduced HSI-UNet, a dual-stream architecture 
that partitions hyperspectral cubes into visible and near-infrared band 
to exploit information from specific wavelength ranges independently. 
Their findings demonstrated that segmentation based solely on the 
visible spectrum was insufficient for tumor identification; however, 
the integration of near-infrared spectra enabled accurate detection of 
positive regions. This highlights the critical role of multi-band spectral 
fusion in overcoming the limitations of single-modality imaging for 
medical segmentation tasks. Similarly, The FDSS Encoder [31] uti-
lizes frequency disentanglement to decompose hyperspectral data into 
high-frequency semantic and low-frequency style components across 
both spatial and spectral domains. This decomposition facilitates more 
comprehensive utilization of multi-scale information. Building on this 
foundation, Zhan et al. [32] developed HyperUNet, incorporating a 
multi-scale supervised loss mechanism to guide spectral-spatial feature 
learning for cholangiocarcinoma segmentation. By employing a linear 
transformation module to enhance discriminative spectral components 
and suppress noise before feeding the data into the network, HyperUNet 
achieved a Dice score of 68.32 on the cholangiocarcinoma dataset. This 
innovation demonstrated that spectral preprocessing within UNet ar-
chitectures can significantly enhance segmentation accuracy. To better 
exploit the rich spectral features within 3D hyperspectral data, Wang 
et al. [33] developed the Hyper-Net architecture, which enhances the 
deep fusion of spectral and spatial information. Hyper-Net, a variant 
of UNet, utilizes 3D convolutions and dual-path dilated convolutions 
to capture fine-grained information in melanoma datasets. Although 
HyperUnet outperforms 2D counterparts by effectively utilizing spectral 
information, its high computational complexity remains a significant 
challenge for high-resolution hyperspectral images, highlighting the 
challenge of balancing feature expression ability and computational 
complexity in clinical hyperspectral analysis.
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In summary, these studies illustrate a clear evolutionary trajectory: 
Although deep learning has promoted the development of hyperspec-
tral image segmentation through multi-stream architecture, spectral 
feature engineering and 3D CNN, the classic UNet-based models still 
face two persistent challenges: insufficient spectral feature utilization 
and high computational cost. Therefore, the search for architectures 
that effectively balance spectral-spatial representation with computa-
tional efficiency remains a critical frontier for translating hyperspectral 
imaging into practical clinical applications.

2.2.3. GCN-based transductive learning
Inspired by the field of remote sensing, Graph Convolutional Net-

work (GCN) has received increasing attention in the medical field 
due to their ability to handle irregularly structured data. Unlike tra-
ditional CNN based networks that use shared parameters and fixed-size 
kernels, GCN can adaptively construct edges according to the local 
features of nodes in a hyperspectral image. This allows GCN to perform 
convolution flexibly on arbitrary irregular regions.

In 2019, Qin et al. [34] proposed a semi-supervised learning frame-
work spectral-spatial graph convolutional networks (S2GCN) for hy-
perspectral image classification, which considers each pixel in a hy-
perspectral image as a node and uses the neighborhood relationship 
between pixels to build edges. It is apparent that this pixel-level graph 
construction approach is not applicable to HR-HSI since the consump-
tion complexity grows exponentially with the number of nodes and 
edges. To reduce the amount of calculation when applying GCN, in 
2021, Hong et al. [35] proposed the miniGCN network, which allows 
to construct and train large-scale GCNs in a minibatch fashion. Note 
that, this network has certain inductive properties and can also reduce 
the amount of calculation. Afterwards, Wan et al. [36] presented 
a multiscale dynamic GCN (MDGCN), which introduces superpixels 
concept into GCN framework and greatly improves the computational 
efficiency compared with pixel-based GCN. Notably, the superpixel-
based GCN achieved a performance improvement of 3.48% on the 
same dataset compared to the miniGCN. In 2022, Ding et al. [37] 
proposed a superpixel-based Multi-Feature Fusion Network (MFGCN) 
that combines multi-scale GCN and multi-scale CNN to extract the 
spatial and spectral information of HSI, respectively. By specific spatial 
and spectral processing channels, it achieves an accuracy improve-
ment of 3.81% compared to the miniGCN on transduction task. Unlike 
the aforementioned methods, Feng et al. [38] proposed discrimina-
tive information refinement (DIR) module tackles spectral redundancy 
by unifying spectral dimensions via adaptive mapping and modeling 
band relationships with k-NN graphs. This spectral-centric approach 
fundamentally deviates from spatial superpixel-based GCN methods, 
directly resolving the spectral complexity inherent in HSI data. How-
ever, GCN-based approaches continue to exhibit several fundamental 
limitations: (1) in hyperspectral image (HSI) processing, traditional 
GCN models inherently lack inductive capabilities, thereby restricting 
their effectiveness in pathological hyperspectral image segmentation; 
(2) although superpixel-based GCN frameworks can alleviate computa-
tional burdens to some extent, achieving an optimal balance between 
contextual feature representation and computational efficiency remains 
a significant challenge; and (3) heterogeneous pixels are inevitably 
introduced during the HSI pre-processing stage, primarily due to the 
inherent noise and spectral variability of HSI data, particularly near 
tissue phenotype boundaries.

To address this issue, a novel DC-MSSFF Net is proposed for patho-
logical HR-HSI segmentation. It adopts an inductive learning method
[39–41], which has more generalization ability and application
prospects compared to transductive learning. Note that, it is a com-
bination of GCN-based and CNN-based framework, which fully utilize 
the spatial information and spectral information of hyperspectral image 
in parallel channels to achieve fine-grained pathological image seg-
mentation. In DC-MSSFF Net, GCN-based channel uses Graph-within-
Graph (GwG) architecture, which can greatly reduce the computational 
3 
burden while establishing the spatial context relationship of the high-
resolution hyperspectral. The multi-scale CNN channel is able to fine-
tune the segmentation boundaries of HSI image at the pixel-level 
according to the spatial–spectral information. Ultimately, the segmenta-
tion results of the microscopic hyperspectral choledoch dataset [42] are 
achieved by fusing the obtained features of the two channels. Moreover, 
an ensemble-based framework [43] is applied to further improve the 
performance of the model.

As the first inductive learning task built upon a joint multi-scale 
GCN and CNN dual-channel architecture, this work achieves state-of-
the-art performance in cholangiocarcinoma high-resolution hyperspec-
tral image (HR-HSI) semantic segmentation. The main contributions of 
this paper are summarized as follows:

∙ Inductive GCN for HR-HSI Segmentation: Drawing inspiration 
from GraphSAGE, we successfully integrate neighbor sampling 
and feature aggregation into our Graph-within-Graph backbone. 
This integration not only significantly enhances the inductive 
capability of the DC-MSSFF Net but also improves computational 
efficiency.

∙ Hierarchical Contextual Feature Representation: We intro-
duce a hierarchical Graph-within-Graph dual-topology represen-
tation that embeds subgraphs into a global graph structure, effec-
tively integrating local and global HSI features. This approach bal-
ances the need for context-aware feature representation with the 
computational burden, offering a robust framework for efficient 
processing.

∙ Fine-Tuning and Optimization: The multi-scale CNN branch 
leverages multi-scale spectral-spatial features to further refine 
segmentation accuracy. It fine-tunes the model to mitigate the im-
pact of heterogeneous pixels introduced during the preprocessing 
stage and captures subtle feature variations, thereby generating 
more accurate superpixel boundaries.

∙ Ensemble Learning: By employing ensembles of three base learn-
ers configured with different hyperparameters, we further en-
hance the accuracy and reliability of HSI segmentation results 
through a majority voting mechanism. This ensemble strategy not 
only improves segmentation performance but also strengthens the 
model’s generalization capability, which is crucial for practical 
applications in pathology.

3. Method

3.1. The framework of DC-MSSFF Net

The block diagram of Dual-Channel multi-scale spatial–spectral fea-
ture fusion network (DC-MSSFF Net) is illustrated in Fig.  1. As shown, 
DC-MSSFF Net consists of two sequential stages: image preprocessing 
and modeling. In the preprocessing stage, dimensionality reduction and 
pixel-to-superpixel mapping are performed. During modeling, the im-
age cube is processed through two parallel channels: a multi-scale GCN 
spatial feature extraction channel (MSFE-GCN channel) and multi-scale 
CNN spectral feature extraction channel (MSFE-CNN channel). The 
MSFE-GCN channel performs efficient segmentation using superpixel 
representations, while the MSFE-CNN channel refines segmentation 
edges at the pixel level. Features from both channels are subsequently 
fused to obtain enhanced segmentation results. Finally, ensemble learn-
ing is employed to mitigate performance sensitivity to hyperparameter 
configurations.

3.2. Data pre-processing

Given a cholangiocarcinoma HSI dataset 𝐷 = {𝑋, 𝑌 } = {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1, 
where 𝑋𝑖 and 𝑌𝑖 are the 𝑖th input HSI and the corresponding pixel-
level label. For each input HSI image, it can be expressed as 𝑋𝑖 =
{𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝐻×𝑊 } ∈ 𝑅𝐻×𝑊 ×𝐵 . Where 𝐻 × 𝑊  and B denote the 
number of spatial pixels and the number of bands in the input image, 
respectively. The pixel-level label 𝑌𝑖 ∈ 𝑅𝐻×𝑊  is provided in the training 
process, which is a binary value in our image segmentation task.
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Fig. 1. DC-MSSFF Net architecture for hyperspectral cholangiocarcinoma segmentation. (a) PSCFE module using 1 × 1 convolution to compress 60 band to 32. (b) MSFE-GCN 
channel is used to capture the context-aware information of the image. (c) MSFE-CNN channel is applied for refining the segmentation boundaries of the HSI.
3.2.1. Dimension reduction
For the input HSI, dimension reduction is first performed through 

principal spectral component feature extraction (PSCFE) module to 
avoid the curse of dimensionality. Let �̄� be the output feature of the 
PSCFE, and it can be expressed as 
�̄� = 𝜎(𝑐𝑜𝑛𝑣1(𝐵𝑁(�̃�))) (1)

where �̃� = 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑁𝑜𝑟𝑚(𝑋) denotes the feature of the input image 
after the spectral normalization, 𝑐𝑜𝑛𝑣1(⋅) indicates 1 × 1 convolution 
operation, BN stands for the batch normalization operation and 𝜎(⋅)
denotes the activation function. Here, �̄� is also considered as an input 
for the two downstream channels.

3.2.2. Pixel to superpixel assignment in MSFE-GCN channel
For MSFE-GCN channel, the pathology microscopic hyperspectral 

image is adaptively partitioned into superpixels based on SLIC algo-
rithm according to the homogeneity of the HSI image (Fig.  2). Here, 
superpixel mapping matrix is obtained. As shown in Fig.  2, the hyper-
spectral image is partitioned into j superpixel regions, and each pixel is 
assigned a superpixel label. For instance, the superpixel region in the 
upper right corner is assigned a pre-segmentation label 22 according 
to the superpixel mapping matrix label. For 𝑖th HSI, the superpixel 
mapping matrix can be denoted as 𝑆𝑖 = {𝑆𝑖,1,… , 𝑆𝑖,𝑗} ∈ 𝑅𝐻×𝑊 . Where 
each element 𝑆𝑖,𝑗 represent 𝑗th superpixel of the 𝑖th image. For the 𝑗th 
superpixel, it contains a total of 𝑗′ pixels and can be represented as 
𝑆𝑖,𝑗 = {𝑆(𝑖,𝑗),1,… , 𝑆(𝑖,𝑗),𝑗′}. Here, the relationship between the number 
of superpixels j in a HSI and hyperparameter 𝑗′ is given by 

𝑗 = 𝐻 ×𝑊
𝑗′ (2)

where hyperparameter 𝑗′ is the number of pixels within each super-
pixel. In our case, candidate value of 𝑗′ = 300, 400 or 500. It adaptively 
adjusted around the candidate values with a variance of 200 pixels 
according to the boundary of tissue types within each HSI.

3.3. Multi-scale GCN spatial feature extraction channel

Graph Convolutional Networks (GCNs) extend convolutional opera-
tions to non-Euclidean data by leveraging graph structural information. 
They effectively capture non-linear node relationships and demonstrate 
4 
strong generalization capabilities. However, pixel-based graph con-
struction imposes significant computational burdens due to complex 
node connectivity. While superpixel-based methods alleviate this by 
treating statistically aggregated superpixels as nodes, they critically 
neglect inter-superpixel details, such as fine textures and boundary 
information. For HSI, an ideal model should exploit relationships both 
within and between superpixels. To address this, we propose a hierar-
chical Graph-within-Graph (GwG) structure to hierarchically establish 
the spatial multiscale feature of pathological HSI. Specifically, the 
overall framework of GwG is composed of a global graph network 
architecture and a certain number of local subgraph networks. Here, 
the subgraphs are obtained via the superpixel mapping matrix S in 
image preprocessing. And the global graph is constructed based on 
these subgraphs in a hierarchical manner. This means that each local 
subgraph is constructed based on pixels, while the global graph is build 
based on the superpixels.

For the 𝑖th input HSI image feature �̄�𝑖 after PSCFE module, the 
global graph 𝑔𝑙𝑜𝑏𝑖 = {𝑆𝑖 , 

𝑔𝑙𝑜𝑏
𝑖 } is constructed using the obtained su-

perpixel mapping matrix 𝑆𝑖, in which 𝑖𝑆 = {𝑆𝑖,1,… ,𝑆𝑖,𝑗} is a set 
of local subgraphs and a node set of 𝑔𝑙𝑜𝑏𝑖 . 𝑔𝑙𝑜𝑏

𝑖  represent the edges 
between the superpixels. Similarly, each subgraph can be denoted as 
𝑆𝑖,𝑗 = {𝑖,𝑗 , 𝑖,𝑗}, where 𝑖,𝑗 and 𝑖,𝑗 represent the vertex set and 
edge set of the subgraph 𝑆𝑖,𝑗 , respectively. Here, each vertex 𝑖,𝑗 is 
a pixel in the subgraph, which can be expressed as 𝑖,𝑗 = �̄�𝑖,𝑗 =
[�̄�(𝑖,𝑗),1,… , �̄�(𝑖,𝑗),𝑎, �̄�𝑖,𝑗,𝑏..., �̄�(𝑖,𝑗),𝑗′ ]

𝑇 . The element �̄�(𝑖,𝑗),𝑗′  stands for the 
𝑗′th node of the 𝑗th subgraph in the input �̄�𝑖. 𝑖,𝑗 denotes the edge set 
of subgraphs. where 𝐴

𝑖,𝑗
 is the adjacency matrix of subgraph 𝑆𝑖,𝑗 for the 

input �̄�𝑖, which can be expressed as 

𝐴𝑎,𝑏
𝑖,𝑗

=
{

1 𝑖𝑓 (𝑋(𝑖,𝑗),𝑎, 𝑋(𝑖,𝑗),𝑏) ∈ 𝑖,𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑠

(3)

where 𝐴𝑎,𝑏
𝑖,𝑗

 denotes the connection between node a and node b in the 
𝑗th superpixel.

3.3.1. Local subgraph network
For the cholangiocarcinoma hyperspectral image dataset, each HSI 

image contains 60 spectral bands. Although superpixel segmentation 
can partition similar pixels into homogeneous regions according to the 
weighted Euclidean distance of spectral and spatial features, there still 
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Fig. 2. The schematic diagram of superpixel mapping matrix. All pixels within a superpixel share identical index values.
Fig. 3. Spectral reflectance variation in two randomly selected superpixels (550–1000 nm wavelength range).
exists significant spectral differences within superpixels, as illustrated 
in Fig.  3. It can be clearly observed from Fig.  3 that there is a significant 
spectral variability within each superpixel, for both cancerous regions 
and normal regions of the tissue. Specifically, although the conven-
tional statistical method such as maximum value can maintain the most 
salient spectral features of superpixels, it may be over exaggerated due 
to spectral variation, as shown in Fig.  3(b). It is obviously that maxi-
mum value on some bands are significantly different from the majority, 
which may lead to biased decision based on such an inappropriate 
feature representation. While for the classical average value statistical 
method, it may be a good alternative option for suppressing noise. 
However, this method vulnerable to external conditions. Besides, these 
simple non-trainable statistical methods cannot provide accurate fea-
ture representation of superpixels, thus affecting the accuracy of final 
segmentation results. Therefore, it is not an optimal option to represent 
each superpixel base on pixel-wise uniform statistical features.

Compared with CNN-based methods, the GCN framework can han-
dle arbitrary irregular-shaped images, which makes it a priority for 
superpixel processing. Theoretically, pixels within a superpixel should 
share similar spatial features and final latent representations. Conse-
quently, we convert each superpixel into a pixel-level graph named 
local subgraph network for fine-grained information mining. Here, each 
pixel is treated as a node of the local subgraph network. As shown in 
Fig.  4, a superpixel is converted into a local subgraph network, in which 
each pixel (red dot) is connected by its four neighbors (green dot). The 
feature vector of each node is the pixel-wise spectral feature along the 
depth dimension.

After pixel-wise graph convolution operation, the output of the local 
subgraph network is given by 
(𝑙) ̃ (−1∕2) ̃ ̃ (−1∕2) (𝑙−1) (𝑙) (4)
𝑌𝑙𝑜𝑐𝑎𝑙 = 𝜎(𝐷𝑙𝑜𝑐𝑎𝑙 𝐴𝑙𝑜𝑐𝑎𝑙𝐷𝑙𝑜𝑐𝑎𝑙 𝑌𝑙𝑜𝑐𝑎𝑙 𝑊 )

5 
Fig. 4. The local subgraph network. The red dot indicates the target node, and the 
green dot indicates the four neighbors of the target node.

where 𝑌 (𝑙−1)
𝑙𝑜𝑐𝑎𝑙  is the output feature of the (𝑙 − 1)th GCN layer. Here 

𝑌 (0)
𝑙𝑜𝑐𝑎𝑙 = �̄�𝑖,𝑗 , when l = 0. Where 𝑊 (𝑙) is the connection weight matrix 
learned by the graph convolution layer. Here, �̃�𝑙𝑜𝑐𝑎𝑙 = 𝐴𝑙𝑜𝑐𝑎𝑙+𝐼 denotes 
a new adjacency matrix of the local subgraph network by adding an 
identity matrix I. �̃�𝑙𝑜𝑐𝑎𝑙 denotes the degree of the adjacency matrix 
�̃�𝑙𝑜𝑐𝑎𝑙. 𝜎(⋅) denotes the activation function like ReLU.

After message passing between nodes in the subgraph, a global 
average pooling (GAP) layer is added to obtain the overall features of 
the superpixels. The feature of 𝑗th superpixel is obtained by 

𝑣𝑖,𝑗 = 𝐺𝐴𝑃 (𝑌𝑖,𝑗 ) (5)

where 𝑌𝑙𝑜𝑐𝑎𝑙 is the output of the GCN layer in each subgraph, 𝐺𝐴𝑃 (⋅)
denote the global average pooling operation. 𝑣𝑖,𝑗 is the aggregated 
feature vector of each subgraph, which is also regarded as a node in 
the global graph. Therefore, the feature representation of the node set 
in global graph can be expressed as  = {𝑣 , 𝑣 ,… , 𝑣 }. 
𝑖 𝑖,1 𝑖,2 𝑖,𝑗
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Fig. 5. The global graph network 𝑔𝑙𝑜𝑏
𝑖  is constructed based on the superpixels. The 

colored nodes in the right represent the superpixels.

3.3.2. Global graph network
For pathological images, superpixel partition would over-segment 

HSI to ensure the homogeneity of superpixels, while integral tissue phe-
notype may be scattered in several adjacent superpixels. Furthermore, 
spatial relationships between various tissue phenotypes can also aid 
in HSI segmentation. Therefore, classifying hyperspectral pixels in HSI 
images only considering the output features 𝑖 of subgraph may lead 
to overall performance degradation due to the inherent limitation of 
considering local features. Here, a global graph network is built hier-
archically based on the adjacent relationships between superpixels and 
the spatial patterns of tissue phenotypes. Each node in the global graph 
represents an embedding of local subgraph features. The hierarchical 
structure of GwG allows for the utilization of both discriminative global 
contextual information and local deep features from HSI, resulting in 
improved image segmentation. Specifically, the global graph can be 
expressed in a transformed form 𝑔𝑙𝑜𝑏𝑖 = {𝑖, 

𝑔𝑙𝑜𝑏
𝑖 } based on the node 

feature embeddings, as shown in Fig.  5. Here, 𝑖 and 𝑔𝑙𝑜𝑏
𝑖  are the node 

set and the edge set in global graph 𝑔𝑙𝑜𝑏𝑖 , respectively. The architecture 
of GwG based on hierarchical feature embedding is shown in Fig.  1.

In the literature, there are two main types of learning problems 
on graphs: transductive learning and inductive learning. Transductive 
learning is inherently a single graph node classification or regression 
problem. This means that that a portion of the nodes are labeled for 
training, and the task is to predict the labels of unannotated nodes. It 
is worth noting that such methods were originally developed to classify 
hyperspectral remote sensing images. In contrast, inductive learning 
can be regarded as an entire graph classification or regression problem. 
It is the learning process in which the learners discover general rules 
by observing the training data, and then apply the rules to the unseen 
test data. The main difference is that during transductive learning, the 
model has already encountered both the training and testing data in 
the training process. However, inductive learning encounters only the 
training data in the learning process and applies the learned mapping 
function to a previously unseen dataset. In our case, the inductive 
capability is essential for high-throughput computer-assisted medical 
image processing systems. Thus, inductive learning is more applicable 
for processing pathological HSI rather than transductive learning does.

Here, GraphSAGE [44] is used as a backbone of our global graph 
network, as it is an inductive algorithm that exploits node feature 
information to generate node embeddings for unseen nodes or graphs. 
Besides, the GraphSAGE is also extremely efficient in generating node 
embeddings of large graphs. The key insight behind it is to decompose 
the large graph into multiple mini-graphs according to the adjacency 
relationship of the superpixels, and then aggregate the information of 
the local neighbors on each mini-graph to obtain the node embeddings.

Fig.  6 is the schematic diagram of the mini graph. In Fig.  6, the 
green nodes represent the superpixels on the global graph, which are 
also considered as the target nodes for mini graph decomposition. The 
red nodes represent the 1-hop neighbors of each target node. The blue 
nodes are the 2-hop neighbors, and so on to obtain k-hop neighbors 
for each target node. In our case, all k-hop neighbors of the target 
node are sampled for each mini graph, since the neighbors of the 
target node do not contain redundant information for it. Meanwhile, 
6 
the computational burden is also acceptable in this scenario. Here, k is 
also known as ‘searching depth’ in the global graph network. As shown 
in Fig.  6, each target node and its k-hop neighbors are treated as a 
mini-batch, and their features are then aggregated on the mini graph 
to form the node embeddings.

The k-hop feature aggregation of the target node can be obtained 
recursively from its (𝑘 − 1)-hop neighbors according to the following 
equation 
ℎ𝑘𝑁𝑒(𝑣𝑖,𝑗 )

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘({ℎ𝑘−1𝑖,𝑢 ,∀𝑢 ∈ 𝑁𝑒(𝑣𝑖,𝑗 )}) (6)

where 𝑁𝑒(𝑣𝑖,𝑗 ) denotes the neighbors of the node 𝑣𝑖,𝑗 . For each node 
𝑣𝑖,𝑗 ∈ 𝑖, Eq.  (6) aggregates its (𝑘 − 1)-hop neighbors to obtain the 
feature vector ℎ𝑘𝑁𝑒(𝑣𝑖,𝑗 )

. This aggregation process relies on the represen-
tations generated in the previous iteration, where the representations 
at k = 0 correspond to the input node features. For the node 𝑣𝑖,𝑗 , the 
obtained feature vector ℎ𝑘𝑁𝑒(𝑣𝑖,𝑗 )

 and its node feature ℎ𝑘−1𝑖,𝑣𝑖,𝑗
 from the pre-

vious aggregator are fused via concatenation operation. Afterwards, the 
contextual feature representation of the node 𝑣𝑖,𝑗 can be transformed 
and expressed as 
ℎ𝑘𝑖,𝑣𝑖,𝑗 = 𝜎(𝑊 𝑘𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑘−1𝑖,𝑣𝑖,𝑗

,ℎ𝑘𝑁𝑒(𝑣𝑖,𝑗 )
)) (7)

where 𝜎 is a non-linearity activation function like ReLU. Then, the L2 
norm is used to normalize the feature embeddings of each node in the 
global graph network: 
ℎ̃𝑖,𝑣𝑖,𝑗 = ℎ𝑘𝑖,𝑣𝑖,𝑗 ∕

‖

‖

‖

ℎ𝑘𝑖,𝑣𝑖,𝑗
‖

‖

‖2
(8)

Therefore, the output feature of the global graph network can be 
denoted as 𝑖 = [ℎ̃𝑖,𝑣𝑖,1 ,… , ℎ̃𝑖,𝑣𝑖,𝑗 ]

𝑇 . Here, skip connection is applied in 
MSFE-GCN channel to perform feature fusion on the superpixels (node), 
and the two features of each node are obtained through local subgraph 
and mini graph heterogeneous frameworks, respectively. That is, 
𝐻𝐺𝑤𝐺 = 𝑖 +𝑖 (9)

This approach alleviates the issue of a significant computational 
complexity surge when applying graphs to HR-HSI. However, the seg-
mentation results obtained by using the MSFE-GCN channel alone 
inevitably introduce heterogeneous pixels in the superpixels based on 
the SLIC algorithm. Therefore, it is necessary to fine-tune the partition 
boundaries of the superpixels by introducing a specific channel.

3.4. Multi-scale CNN spectral feature extraction channel

The Multi-Scale GCN Spatial Feature Extraction Channel (MSFE-
GCN) performs HSI segmentation using a hierarchical Graph-within-
Graph (GwG) topology operating at the superpixel level. To further 
enhance segmentation accuracy, we introduce a parallel Multi-Scale 
CNN Spectral Feature Extraction Channel (MSFE-CNN). As illustrated 
in Fig.  1, this channel refines superpixel boundaries at the pixel level, 
compensating for lost intra-superpixel detail. Since high-precision seg-
mentation requires multi-scale local features, the MSFE-CNN channel 
explicitly incorporates dual receptive fields to capture complementary 
spectral characteristics.

In each subchannel, we split the 3D convolution kernel into 1D spec-
tral convolution kernel and 2D spatial convolution kernel to avoid a 
significant increase in parameters and computational complexity. Here, 
1D convolution kernel in each subchannel is used to further extract and 
refine the spectral features of HSI. While the following 2D convolution 
kernels are applied to extract spatial features of HSI in different scales 
based on 3 × 3 and 5 × 5 convolution kernels, respectively. As shown in 
Fig.  1, the sequential stacking of multiple convolutional layers allows 
the MSFE-CNN channel to capture more complex and abstract spectral 
features for pixel-level fine-tuning of hyperspectral image segmentation 
results of the GwG channel. Therefore, the output of the lth layer is 
given by 
𝑙 ′𝑙 𝑙 ̃ 𝑙−1 𝑙 (10)
𝑇𝑟 = 𝜎(𝑊𝑟 ⋅ 𝜎(𝑊𝑟 𝑇 ) + 𝑏𝑟)
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Fig. 6. Schematic diagram of the mini graph. The feature of the target node is progressively aggregated from 𝑘-hop to itself, thereby refining the embedding of the node.
Fig. 7. Ensemble learning architecture.
where 𝑊 𝑙
𝑟  and 𝑏𝑙𝑟 denote the 1D connection weights and bias, re-

spectively. While 𝑊 ′𝑙
𝑟  denotes 2D convolution kernels with different 

receptive fields after the corresponding 1D convolution kernels. Specif-
ically, it is a 3 × 3 or 5 × 5 convolution kernels convolutional kernel 
in each sub-channel, respectively. Here, �̃� 𝑙−1 = 𝐵𝑁(𝑇 𝑙−1) denotes the 
normalized output of (𝑙 − 1)th layer, which can also be regarded as 
the input of the l layer. As shown in Eqs.  (1) and (10), the input of 
MSFE-CNN channel can be expressed as 𝑇 0 = �̄�. Finally, the features 
obtained from the MSFE-CNN channel are denoted as 𝑇𝐶𝑁𝑁 .

Afterwards, the obtained features of the two channels are fused 
through concatenate operation 
𝐹 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐻𝐺𝑤𝐺 ∥ 𝑇𝐶𝑁𝑁 ) (11)

where F is the final output after feature fusion. 𝑐𝑜𝑛𝑐𝑎𝑡(· ∥ ·) denotes the 
concatenate operation. Finally, the segmentation result is obtained after 
the fully connected layer, which is also illustrated in Fig.  1. Here, the 
DC-MSSFF Net is optimized in an end-to-end manner by a minimizing 
the cross-entropy of predicted labels and ground truth.

3.5. Ensemble learning

In data pre-processing stage, the number of superpixels j in a HSI is a 
significant hyperparameter for representing different tissue phenotype, 
which severely affects the final image segmentation quality and accu-
racy. Specifically, small j would introduce heterogeneous pixels in the 
superpixels which will lead to the performance degradation. Whereas 
large j would increase the running time and computational burden for 
the hardware. To tackle this issue, an ensemble learning framework 
7 
is used with DC-MSSFF Net as the base learner. In our case, there are 
three base learners, and the only difference between them is the setting 
of the hyperparameter 𝑗′, which takes values of 300, 400 and 500, 
respectively. The final segmentation result is obtained by the maximum 
voting of the three base learners. Fig.  7 shows the ensemble learning 
architecture for processing the HSI images.

4. Experiments

4.1. Dataset and implementation details

Hyperspectral choledochal database. It is one of the largest public 
pathological hyperspectral image datasets obtained from the Changhai 
hospital, Shanghai, China. The image size of the microscopy hyper-
spectral date cube is 1024 × 1280 × 60. Each hyperspectral image 
contains 60 bands, which are obtained by sampling uniformly over the 
wavelength range of 550 nm to 1000 nm. The HSI data cube are stored 
in the BSQ (band sequential) format. While the labels are marked with 
polygons and stored as .xml format.

In the experiments, a total of 338 cholangiocarcinoma hyperspectral 
images were divided into training, validation, and test sets following 
an approximate 8:1:1 ratio, comprising 258, 40, and 40 images respec-
tively. The model was trained on an NVIDIA RTX 3090 (24 GB) GPU 
for 75 epochs with a batch size of 1, resulting in a total training time of 
approximately 120 h. Performance was evaluated using the Sorensen-
Dice coefficient (Dice) and Intersection over Union (IoU). Detailed 
hyperparameter configurations are summarized in Table  1. 



M. Liang et al. Computer Methods and Programs in Biomedicine 269 (2025) 108905 
Table 1
Hyperparameter settings.
 Category Parameter Value Remarks  
 Data Training set 258 8:1:1 split ratio  
 Partition Validation set 40  
 Test set 40  
 Training Optimizer Adam  
 Setup Initial learning rate 0.001  
 Batch size 1 Limited by GPU memory  
 Training epochs 75  
 Model PSCFE output channels 32 Principal spectral component extraction 
 Architecture GCN search depth (𝑘) 3 For global graph aggregation  
 Ensemble learners 3 𝑗′ = 300, 400, 500  
Fig. 8. The average reflectance intensity values versus wavelength in negative region 
(blue) and positive region (red).

Table 2
Dice (%) and IoU (%) indices of pathological images 
based on HSI and RGB Modalities.
 Modality Dice↑ IoU↑  
 RGB 64.76 48.57 
 HSI 70.47 55.33 

4.2. Results

HSI vs. RGB:  In field of pathological image processing, HSI cubes 
with high spatial and spectral resolution may potentially contain more 
diagnostic information than H&E-stained RGB images.

Fig.  8 presents the choledochal reflectance intensity values versus 
wavelength for cancerous and normal regions (the size of region are 
20 × 20) in the testing set. In this figure, the horizontal axis represents 
the wavelength range from 550 nm to 1000 nm, while the vertical 
axis depicts the tissue reflectance intensity values corresponding to 
each wavelength. The darker lines indicate the average reflectance 
intensity values, whereas the shaded areas represent the standard error, 
reflecting the variance across the curves. As illustrated in Fig.  8, it 
is evident that the reflectance intensity values for the normal regions 
(blue line) are significantly higher than those for the cancerous regions 
(red line) within the spectral range of 600 nm to 750 nm, a distinction 
that could potentially benefit image segmentation tasks.

To further validate the effectiveness of hyperspectral imaging (HSI), 
segmentation experiments were conducted on pathological HSI images 
and their corresponding RGB images using the DC-MSSFF Net. The 
results of the cholangiocarcinoma HSI segmentation are summarized in 
Table  2. It is apparent that the Dice and Intersection over Union (IoU) 
indices for the segmentation results based on the hyperspectral cube are 
substantially higher than those obtained from the RGB modality. This 
improvement can be attributed to the rich spectral information embed-
ded in each pixel of the pathological HSI cubes, which is extremely 
valuable for achieving high-precision image segmentation, particularly 
for lesions that lack distinct features in RGB images. 

The result of DC-MSSFF Net: Fig.  9 and Table  3 show the quali-
tative and quantitative results of HSI segmentation, respectively. Since 
8 
single-band grayscale images from the mid-spectral range (band 25th–
band 30th) are relatively optimal for human interpretation. Here, band 
30th is selected for visual analyzation. Fig.  9(𝑎7)–(𝑒7) are the im-
age segmentation results of cholangiocarcinoma HSI using DC-MSSFF 
Net. While Fig.  9(𝑎8)–(𝑒8) represent the corresponding ground truth. 
To clearly illustrate the segmentation results, Fig.  9(𝑎1)–(𝑒1)show the 
original gray-scale images of cholangiocarcinoma in band 30th as a 
reference. The positive regions of each image are highlighted with a 
red mask.

As illustrated in Fig.  9, the segmentation results demonstrate that 
the pathological HSI image segmentation based on DC-MSSFF Net 
has high concordance with the ground truth, with sharply defined 
boundaries between positive and negative regions. The average Dice 
score and IOU can reach 70.47 and 55.33, further demonstrating its 
effectiveness in pathological HR-HSI segmentation tasks. Specifically, 
the DC-MSSFF Net accurately segmented the malignant epithelial tissue 
of the gland as positive, while predicting the large white empty space 
within the gland corresponding to the lumen of cholangiocarcinoma 
cells as negative. This observation underscores the model’s capability 
for fine-grained discrimination in pathological HSI segmentation. It 
can be primarily attributed to the spectral information contained in 
hyperspectral images. While our method effectively leverages these 
spectral variations to perform fine-grained image segmentation. Be-
sides, small glands merge with the surrounding tissues and are prone 
to being easily ignored, but DC-MSSFF Net effectively identifies the 
epithelial structures and accurately distinguishes them from adjacent 
luminal regions, which is marked with yellow square in Fig.  9(𝑏7). It 
is worth mentioning that DC-MSSFF Net, as the first inductive learning 
task based on joint multiscale GCN and CNN dual-channel architecture, 
which achieves state-of-the-art performance on pathological HR-HSI 
semantic segmentation.

4.3. Discussion

DC-MSSFF Net vs. Other image segmentation networks: To val-
idate the effectiveness of the proposed DC-MSSFF Net, we conducted 
comprehensive comparisons qualitatively and quantitatively with other 
state-of-the-art models, which are also presented in Fig.  9 and Table  3.

(i) Classical Image Segmentation Frameworks: These methods, 
which include UNet and UNet++, are classical medical image seg-
mentation networks. For the Unet, the green squares in Fig.  9(𝑎2)
and (𝑑2) show that the malignant glands in each image are clearly 
segmented as a whole, and the large white empty regions in the gland 
corresponding to the lumen of the are also segmented as positive. This 
fact illustrates that the utilization of multi-scale spatial information in 
the Unet can ensure the segmentation of the most distinctive malignant 
glands. However, some smaller malignant gland are prone to be ignored 
according to the ground truth, which is highlighted with yellow squares 
in Fig.  9(𝑏2), (𝑐2) and (𝑒2). This is mainly because the model cannot 
capture the subtle spectral variation in cholangiocarcinoma HSI to 
achieve fine-grained image segmentation. In contrast, the segmentation 
performance of UNet++ is improved compared with Unet due to the 
properties of multi-scale spatial feature extraction and fusion operation. 
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Fig. 9. Qualitative comparison of HSI segmentation using the proposed DC-MSSFF Net. Here, we selected grayscale images from the 30th spectral band and overlaid the predicted 
segmentation masks (highlighted in red) onto the images using alpha blending (𝛼 = 0.3).
Table 3
Quantitative comparison of DC-MSSFF Net vs. SOTA image segmentation networks based on cholangio-
carcinoma HSI dataset.
 Method Mean dice↑ (Median, Max, Min) IoU↑ Parameters 
 HSI UNet [30] 62.92(66.71, 99.93, 12.59) 49.48 /  
 MFGCN [37] 63.21(66.43, 89.22, 16.71) 49.66 /  
 UNet [26] 65.80(66.52, 93.87, 17.97) 50.91 34.53 M  
 UNet++[27] 66.32(66.91, 94.66, 17.43) 51.43 47.20 M  
 HyperUNet [32] 68.32 / /  
 SSTE-Former [45] 67.09(67.30, 88.50, 19.16) 52.26 /  
 GraphUNet [46] 68.57(69.50, 84.63, 29.55) 53.50 /  
 DC-MSSFF Net (𝑗′ = 300) 68.68(69.50, 88.64, 21.10) 53.29 0.033 M  
 DC-MSSFF Net (𝑗′ = 400) 69.75(71.47, 87.06, 24.99) 54.48 0.033 M  
 DC-MSSFF Net (𝑗′ = 500) 69.12(69.81, 86.50, 24.56) 53.74 0.033 M  
 DC-MSSFF Net (Ensamble) 70.47(71.47, 87.43, 24.37) 55.33 0.099 M  
Nevertheless, the white empty regions in the gland are still partially 
separated from the positive area, which highlighted with green squares 
in Fig.  9(𝑎3) and (𝑑3). Meanwhile, it also exists the issue of over-
segmentation, as shown by the yellow squares in Fig.  9(𝑎 ), (𝑐 ) and 
3 3
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(𝑑3). These are mainly beacuse the classic UNet-like achitectures failed 
to effectively capture the necessary spectral information in HR-HSI, 
which seriously affects the segmentation performance. Furthermore, 
Applying Unet and its variants directly to proccess hyperspectral images 
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has drawback that they cannot handle images with large size, espacially 
HR-HSI.

(ii) U-net Variants: Methods such as HSI UNet and Hyper UNet 
represent UNet variants that incorporate specialized spectral informa-
tion processing blocks in hyperspectral image analysis. For HSI UNet, 
the perfomance of the model lags behind all the comparison models. 
This is primarily due to the architectural limitations of the model in 
capturing and representing multi-scale spatial features. Nonetheless, 
it also demonstrated the significance of spectral information in fine-
grained HSI image segmentation, typical cases are highlighted with 
green square in Fig.  9(𝑎4) and (𝑑4). While for Hyper UNet, it uses multi-
scale supervision at each layer to regulate low-level detailed features 
and high-level semantic features at different scales, so that the output 
of the latter scale could benefit from the former scale. The Dice score 
of the model improved to 68.32 by utilizing the spectral information of 
HSI [32]. Therefore, it can be concluded that fully extraction of spatial 
and spectral information in HR-HSI images is an important factor for 
image segmentation.

(iii) Transformer-based Frameworks: Among the compared mod-
els, SSTE-Former employs a transformer-based architecture to model 
spectral-spatial dependencies, demonstrating moderate performance in 
hyperspectral feature integration. However, in hyperspectral imaging, 
not all pixel instances are mutually related; consequently, computing 
attention intensities for irrelevant instances not only results in marginal 
performance gains but also imposes an undesirable computational bur-
den. Furthermore, the transformer-based architecture is limited in its 
ability to fully exploit the rich spectral information embedded within 
the hyperspectral data cube. As a result, the proposed DC-MSSFF Net 
surpasses SSTE-Former by 3.38% in Dice coefficient and 3.07% in 
Intersection over Union (IoU), confirming its superior performance in 
pathological HR-HSI segmentation tasks.

(iv) GCN-based Methods: Task-specific GCN-based methods, in-
cluding MFGCN and GraphUNet, utilize GCN to construct contextual 
information of the input image. However, They all suffer from the 
insufficient feature representation issue of contextual fine-grained in-
formation. MFGCN is only based on superpixels and does not repre-
sent the internal features of superpixels in detail. Therefore, it cannot 
capture the significant spectral differences within superpixels and is 
not suitable for high-precision segmentation of pathological HR-HSI. 
Thus, there are many segmentation errors based on MFGCN, which 
are marked with orange squares in Fig.  9(𝑎5)–(𝑒5). For the GraphUNet, 
context feature representation and reconstruction are achieved through 
node aggregation and projection. However, only the top ranked nodes 
are retained during downsampling, resulting in the loss of fine-grained 
information in the reconstruction stage, as shown by the blue squares 
in Fig.  9(𝑏6), (𝑐6) and (𝑒6).

In summary, the DC-MSSFF network demonstrates notable advan-
tages in HR-HSI segmentation by jointly employing the MSFE-GCN and 
MSFE-CNN channels. The innovative dual-channel architecture effec-
tively integrates tissue topology with spatial–spectral detail features, 
thereby enabling more refined segmentation of diseased tissues and 
their boundaries. By hierarchically capturing spatial dependencies and 
simultaneously mitigating intra-superpixel heterogeneity, the proposed 
framework successfully addresses the limitations of traditional methods 
in multi-scale feature fusion and computational efficiency. Experimen-
tal results validate its superior performance, achieving a Dice score 
of 70.47 and an IoU of 55.33 on hyperspectral cholangiocarcinoma 
images. A representative case is highlighted with a yellow/green square 
in Fig.  9(𝑎7)–(𝑒7).

4.4. Ablation studies

To demonstrate the effectiveness of the proposed model, ablation 
of the local subgraph network within GwG, ablation of the MSFE-CNN 
channel, and ablation of the PSCFE module are conducted on DC-MSSFF 
Net. The results of these ablation studies are summarized in Table  4.
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Table 4
Ablation studies.
 Method Dice↑ IoU↑  
 w/o Local subgraph network 64.51 48.72 
 w/o MSFE-CNN channel 68.27 52.63 
 DC-MSSFF Net 69.12 53.74 

Table 5
The ablation studies of PSCFE module and the PSCFE module with different output 
channels.
 DC-MSSFF w/o 1DCNN 128 output 32 output 16 output 
 Dice 68.03 67.02 69.12 64.12  
 IoU 52.47 51.43 53.74 48.33  
 FLOPs 31.93G 76.57G 43.35G 37.81G  

As shown in the Table, ablation of the local subgraph network in 
the MSFE-GCN channel causes a significant performance degradation, 
with the Dice score dropping from 69.12 to 64.51. This degradation is 
primarily caused by the failure to fully utilize the fine-grained spectral 
information of pixel within each superpixel. Without local subgraph 
network, the superpixel features are simply based on statistical pooling 
of pixel features, which is insufficient to represent the underlying 
spatial–spectral heterogeneity within a superpixel, such as the con-
tinuous spectral variations shown in Fig.  3. This ablation operation 
demonstrates the significance of hierarchical fine-grained contextual 
feature representation in HSI segmentation, especially in complex his-
tological environments with less heterogeneity, as shown in Fig.  10(𝑎2), 
(𝑏2) and (𝑑2).

Moreover, although the MSFE-GCN channel provides hierarchical 
multi-scale spatial–spectral information, it still leads to blurred bound-
aries and over-segmentation of glands when acting alone, as shown in 
Fig.  10(𝑎3)–(𝑓3). This underscores the critical role of the MSFE-CNN 
channel in rectifying segmentation errors from the superpixel pre-
processing stage. The performance degradation further demonstrates 
that pixel-level feature refinement via the CNN channel is essential 
to compensate for the inherent limitations of superpixel segmentation 
methods like SLIC.

Table  5 shows the ablation experiments of the PSCFE module, 
which demonstrates the impact of dimensionality reduction on model 
efficiency and accuracy. As shown in Table  5, the model without 
1D-CNN will result in overall performance degradation. This can be 
attributed to the curse of dimensionality, as excessively high feature di-
mensions will lead to overfitting and reduced generalization capability. 
Furthermore, quantitative evaluation across varying channel reduction 
rates demonstrated that the configuration with 32 output channels pro-
vides the trade-off between segmentation accuracy and computational
burden.

5. Conclusions

The diagnosis of cholangiocarcinoma is a major challenge in the 
field of medical image processing. For its atypical features, it is ex-
tremely difficult to make a high-precision diagnosis even based on 
H&E-stained pathological images. In this study, DC-MSSFF Net is pro-
posed for semantic segmentation of cholangiocarcinoma HR-HSI. This 
approach fully utilizes the spatial information and spectral informa-
tion of HR-HSI in parallel channels to achieve pathological image 
segmentation through a GwG convolution network and a multi-scale 
CNN architecture, respectively. To further improve the performance 
and reliability of the model, ensemble learning framework is also 
applied, where each DC-MSSFF Net acts as a base learner. The result 
demonstrated that the Dice score of the Cholangiocarcinoma HR-HSI 
data can reach 70.47 after ensemble learning, which outperforms the 
SOTA method and RGB-based image segmentation methods despite the 
limited amount of the microscopic hyperspectral choledoch pathology 
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Fig. 10. The generated masks of the HR-HSI in ablation studies. (𝑎1)–(𝑓1) show the result of our DC-MSSFF Net. (𝑎2)–(𝑓2) are the model w/o local subgraph network in MSFE-GCN 
channel. (𝑎3)–(𝑓3) show the model w/o MSFE-CNN channel. (𝑎4)–(𝑓4) are the corresponding ground truth (White areas represent the positive regions, while black areas denote the 
negative regions).
data. Qualitative and quantitative comparisons is performed with other 
image segmentation methods, which illustrate the superior perfor-
mance of the proposed algorithm in pathological HR-HSI segmenta-
tion. Notably, this framework pioneers the inductive learning task of 
deep frameworks based on the joint of GCN and CNN for semantic 
segmentation of HR-HSI data.

However, the DC-MSSFF Net still faces certain limitations in rep-
resenting heterogeneous features across superpixels within each hy-
perspectral data cube and is subject to considerable computational 
burden. In each hyperspectral cube, there exists significant diversity 
among negative samples associated with individual superpixels; the 
model, however, does not currently account for the influence of these 
heterogeneous negative samples, which can adversely impact segmen-
tation performance to some extent. As part of future work, we plan 
to develop a diversity-based negative sample selection algorithm to 
enhance the model’s robustness and overall segmentation accuracy. 
Moreover, given the substantial computational demands associated 
with processing large-scale hyperspectral datasets, balancing computa-
tional complexity with segmentation performance emerges as a critical 
challenge that must be urgently addressed.

CRediT authorship contribution statement

Meiyan Liang: Writing – review & editing, Writing – original 
draft, Visualization, Software, Methodology, Conceptualization. Zelin 
Xi: Writing – review & editing, Writing – original draft, Visualiza-
tion, Software, Methodology, Data curation, Conceptualization. Bo Li: 
Writing – review & editing. Lin Wang: Visualization, Investigation.

Declaration of competing interest

The authors declared that they have no conflicts of interest in this 
work.

Acknowledgments

This work is supported in part by Natural Science Foundation 
of Shanxi Province, China under Grant 202303021211014, National 
Natural Science Foundation of China under Grant 11804209. It is 
also supported in part by Shanxi Scholarship Council of China 2023-
010, China Postdoctoral Science Foundation, China 2023M742577, 
Postgraduate Education Innovation Program of Shanxi Province, China 
2024SJ016 and Continued Funding Project for High-level Research 
Achievements of Shanxi Bethune Hospital (Shanxi Academy of Medical 
Sciences), China (2024GSPYJ08).
11 
Data availability

The Hyperspectral choledochal database is available from the kag-
gle platform data sharing (https://www.kaggle.com/datasets/ethelzq/
multiDimension-choledoch-database).

References

[1] P.J. Brindley, M. Bachini, S.I. Ilyas, S.A. Khan, A. Loukas, A.E. Sirica, B.T. Teh, 
S. Wongkham, G.J. Gores, Cholangiocarcinoma, Nat. Rev. Dis. Prim. 7 (1) (2021) 
65, http://dx.doi.org/10.1038/s41572-021-00300-2.

[2] K.N. Lazaridis, G.J. Gores, Cholangiocarcinoma, Gastroenterology 128 (6) (2005) 
1655–1667, http://dx.doi.org/10.1053/j.gastro.2005.03.040.

[3] S. Seidlitz, J. Sellner, J. Odenthal, B. Özdemir, A. Studier-Fischer, S. Knödler, 
L. Ayala, T.J. Adler, H.G. Kenngott, M. Tizabi, et al., Robust deep learning-
based semantic organ segmentation in hyperspectral images, Med. Image Anal. 
80 (2022) 102488, http://dx.doi.org/10.1016/j.media.2022.102488.

[4] Y. Tarabalka, J. Chanussot, J.A. Benediktsson, Segmentation and classification of 
hyperspectral images using minimum spanning forest grown from automatically 
selected markers, IEEE Trans. Syst. Man Cybern. B 40 (5) (2010) 1267–1279, 
http://dx.doi.org/10.1109/TSMCB.2009.2037132.

[5] M. Paoletti, J. Haut, J. Plaza, A. Plaza, Deep learning classifiers for hyper-
spectral imaging: A review, ISPRS J. Photogramm. Remote Sens. 158 (2019) 
279–317, http://dx.doi.org/10.1016/j.isprsjprs.2019.09.006, URL: https://www.
sciencedirect.com/science/article/pii/S0924271619302187.

[6] G. Lu, X. Qin, D. Wang, S. Muller, H. Zhang, A. Chen, Z.G. Chen, B. Fei, 
Hyperspectral imaging of neoplastic progression in a mouse model of oral 
carcinogenesis, in: Medical Imaging 2016: Biomedical Applications in Molecular, 
Structural, and Functional Imaging, vol. 9788, SPIE, 2016, pp. 252–259, http:
//dx.doi.org/10.1117/12.2216553.

[7] A. Madooei, R.M. Abdlaty, L. Doerwald-Munoz, J. Hayward, M.S. Drew, Q. Fang, 
J. Zerubia, Hyperspectral image processing for detection and grading of skin 
erythema, in: Medical Imaging 2017: Image Processing, vol. 10133, SPIE, 2017, 
pp. 577–583, http://dx.doi.org/10.1117/12.2254132.

[8] N. Kumar, P. Uppala, K. Duddu, H. Sreedhar, V. Varma, G. Guzman, M. Walsh, 
A. Sethi, Hyperspectral tissue image segmentation using semi-supervised NMF 
and hierarchical clustering, IEEE Trans. Med. Imaging 38 (5) (2019) 1304–1313, 
http://dx.doi.org/10.1109/TMI.2018.2883301.

[9] C. Rodarmel, J. Shan, Principal component analysis for hyperspectral image 
classification, Surv. Land Inf. Sci. 62 (2) (2002) 115–122.

[10] E. Aloupogianni, M. Ishikawa, T. Ichimura, M. Hamada, T. Murakami, A. 
Sasaki, K. Nakamura, N. Kobayashi, T. Obi, Effects of dimension reduction of 
hyperspectral images in skin gross pathology, Ski. Res. Technol. 29 (2) (2023) 
e13270, http://dx.doi.org/10.1111/srt.13270.

[11] M. Nathan, A.S. Kabatznik, A. Mahmood, Hyperspectral imaging for cancer 
detection and classification, in: 2018 3rd Biennial South African Biomedical 
Engineering Conference, SAIBMEC, Stellenbosch, South Africa, 2018, pp. 1–4, 
http://dx.doi.org/10.1109/SAIBMEC.2018.8363180.

https://www.kaggle.com/datasets/ethelzq/multiDimension-choledoch-database
https://www.kaggle.com/datasets/ethelzq/multiDimension-choledoch-database
https://www.kaggle.com/datasets/ethelzq/multiDimension-choledoch-database
http://dx.doi.org/10.1038/s41572-021-00300-2
http://dx.doi.org/10.1053/j.gastro.2005.03.040
http://dx.doi.org/10.1016/j.media.2022.102488
http://dx.doi.org/10.1109/TSMCB.2009.2037132
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.006
https://www.sciencedirect.com/science/article/pii/S0924271619302187
https://www.sciencedirect.com/science/article/pii/S0924271619302187
https://www.sciencedirect.com/science/article/pii/S0924271619302187
http://dx.doi.org/10.1117/12.2216553
http://dx.doi.org/10.1117/12.2216553
http://dx.doi.org/10.1117/12.2216553
http://dx.doi.org/10.1117/12.2254132
http://dx.doi.org/10.1109/TMI.2018.2883301
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb9
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb9
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb9
http://dx.doi.org/10.1111/srt.13270
http://dx.doi.org/10.1109/SAIBMEC.2018.8363180


M. Liang et al. Computer Methods and Programs in Biomedicine 269 (2025) 108905 
[12] G. Lu, D. Wang, X. Qin, S. Muller, J.V. Little, X. Wang, A.Y. Chen, G. Chen, B. 
Fei, Histopathology feature mining and association with hyperspectral imaging 
for the detection of squamous neoplasia, Sci. Rep. 9 (1) (2019) 17863, http:
//dx.doi.org/10.1038/s41598-019-54139-5.

[13] A.F. Goetz, Three decades of hyperspectral remote sensing of the Earth: A 
personal view, Remote Sens. Environ. 113 (2009) S5–S16, http://dx.doi.org/10.
1016/j.rse.2007.12.014.

[14] A. Sellami, M. Farah, I. Riadh Farah, B. Solaiman, Hyperspectral imagery 
classification based on semi-supervised 3-D deep neural network and adaptive 
band selection, Expert Syst. Appl. 129 (2019) 246–259, http://dx.doi.org/10.
1016/j.eswa.2019.04.006, URL: https://www.sciencedirect.com/science/article/
pii/S0957417419302374.

[15] F. Zhao, J. Zhang, Z. Meng, H. Liu, Z. Chang, J. Fan, Multiple vision 
architectures-based hybrid network for hyperspectral image classification, Expert 
Syst. Appl. 234 (2023) 121032, http://dx.doi.org/10.1016/j.eswa.2023.121032, 
URL: https://www.sciencedirect.com/science/article/pii/S0957417423015348.

[16] W. Ye, W. Zhang, W. Lei, W. Zhang, X. Chen, Y. Wang, Remote sensing 
image instance segmentation network with transformer and multi-scale feature 
representation, Expert Syst. Appl. 234 (2023) 121007, http://dx.doi.org/10.
1016/j.eswa.2023.121007, URL: https://www.sciencedirect.com/science/article/
pii/S0957417423015099.

[17] R. Dian, T. Shan, W. He, H. Liu, Spectral super-resolution via model-guided 
cross-fusion network, IEEE Trans. Neural Networks Learn. Syst. 35 (7) (2024) 
10059–10070, http://dx.doi.org/10.1109/TNNLS.2023.3238506.

[18] R. Dian, Y. Liu, S. Li, Low-rank transformer for high-resolution hyperspectral 
computational imaging, Int. J. Comput. Vis. (2025).

[19] B. Qin, S. Feng, C. Zhao, W. Li, R. Tao, J. Zhou, Language-enhanced dual-level 
contrastive learning network for open-set hyperspectral image classification, IEEE 
Trans. Geosci. Remote Sens. 63 (2025) 1–14, http://dx.doi.org/10.1109/TGRS.
2025.3549049.

[20] G. Lu, B. Fei, Medical hyperspectral imaging: A review, J. Biomed. Opt. 19 
(1) (2014) 010901, http://dx.doi.org/10.1117/1.JBO.19.1.010901, URL: https:
//doi.org/10.1117/1.JBO.19.1.010901.

[21] V. Dremin, Z. Marcinkevics, E. Zherebtsov, A. Popov, A. Grabovskis, H. Kro-
nberga, K. Geldnere, A. Doronin, I. Meglinski, A. Bykov, Skin complications 
of diabetes mellitus revealed by polarized hyperspectral imaging and machine 
learning, IEEE Trans. Med. Imaging 40 (4) (2021) 1207–1216, http://dx.doi.org/
10.1109/TMI.2021.3049591.

[22] G. Cheng, Z. Li, J. Han, X. Yao, L. Guo, Exploring hierarchical convolutional 
features for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 
56 (11) (2018) 6712–6722, http://dx.doi.org/10.1109/TGRS.2018.2841823.

[23] Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature extraction and 
classification of hyperspectral images based on convolutional neural networks, 
IEEE Trans. Geosci. Remote Sens. 54 (10) (2016) 6232–6251, http://dx.doi.org/
10.1109/TGRS.2016.2584107.

[24] S.K. Roy, G. Krishna, S.R. Dubey, B.B. Chaudhuri, Hybridsn: Exploring 3-d–2-
d CNN feature hierarchy for hyperspectral image classification, IEEE Geosci. 
Remote. Sens. Lett. 17 (2) (2020) 277–281, http://dx.doi.org/10.1109/LGRS.
2019.2918719.

[25] D. Wang, B. Du, L. Zhang, Y. Xu, Adaptive spectral–spatial multiscale contextual 
feature extraction for hyperspectral image classification, IEEE Trans. Geosci. 
Remote Sens. 59 (3) (2021) 2461–2477, http://dx.doi.org/10.1109/TGRS.2020.
2999957.

[26] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomed-
ical image segmentation, in: N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi 
(Eds.), Medical Image Computing and Computer-Assisted Intervention, MICCAI 
2015, Springer International Publishing, Cham, 2015, pp. 234–241, http://dx.
doi.org/10.1007/978-3-319-24574-4_28.

[27] Z. Zhou, M.M.R. Siddiquee, N. Tajbakhsh, J. Liang, UNet++: Redesigning skip 
connections to exploit multiscale features in image segmentation, IEEE Trans. 
Med. Imaging 39 (6) (2020) 1856–1867, http://dx.doi.org/10.1109/TMI.2019.
2959609.

[28] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A.L. Yuille, Y. Zhou, 
Transunet: Transformers make strong encoders for medical image segmentation, 
2021, arXiv preprint arXiv:2102.04306.
12 
[29] O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, 
S. McDonagh, N.Y. Hammerla, B. Kainz, et al., Attention U-net: Learning where 
to look for the pancreas, 2018, arXiv preprint arXiv:1804.03999.

[30] S. Trajanovski, C. Shan, P.J.C. Weijtmans, S.G.B. de Koning, T.J.M. Ruers, 
Tongue tumor detection in hyperspectral images using deep learning semantic 
segmentation, IEEE Trans. Biomed. Eng. 68 (4) (2021) 1330–1340, http://dx.
doi.org/10.1109/TBME.2020.3026683.

[31] B. Qin, S. Feng, C. Zhao, B. Xi, W. Li, R. Tao, FDGNet: Frequency disentanglement 
and data geometry for domain generalization in cross-scene hyperspectral image 
classification, IEEE Trans. Neural Networks Learn. Syst. (2024) 1–14, http:
//dx.doi.org/10.1109/TNNLS.2024.3445136.

[32] G. Zhan, Y. Uwamoto, Y.-W. Chen, HyperUNet for medical hyperspectral image 
segmentation on a choledochal database, in: 2022 IEEE International Conference 
on Consumer Electronics, ICCE, Las Vegas, NV, USA, 2022, pp. 1–5, http:
//dx.doi.org/10.1109/ICCE53296.2022.9730171.

[33] Q. Wang, L. Sun, Y. Wang, M. Zhou, M. Hu, J. Chen, Y. Wen, Q. Li, Identifica-
tion of melanoma from hyperspectral pathology image using 3D convolutional 
networks, IEEE Trans. Med. Imaging 40 (1) (2021) 218–227, http://dx.doi.org/
10.1109/TMI.2020.3024923.

[34] A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph 
convolutional networks for semisupervised hyperspectral image classification, 
IEEE Geosci. Remote. Sens. Lett. 16 (2) (2019) 241–245, http://dx.doi.org/10.
1109/LGRS.2018.2869563.

[35] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional 
networks for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 
59 (7) (2021) 5966–5978, http://dx.doi.org/10.1109/TGRS.2020.3015157.

[36] S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph 
convolutional network for hyperspectral image classification, IEEE Trans. Geosci. 
Remote Sens. 58 (5) (2020) 3162–3177, http://dx.doi.org/10.1109/TGRS.2019.
2949180.

[37] Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Cai, C. Yu, N. Yang, W. Cai, Multi-
feature fusion: Graph neural network and CNN combining for hyperspectral 
image classification, Neurocomputing 501 (2022) 246–257, http://dx.doi.org/
10.1016/j.neucom.2022.06.031, URL: https://www.sciencedirect.com/science/
article/pii/S0925231222007329.

[38] S. Feng, H. Zhang, B. Xi, C. Zhao, Y. Li, J. Chanussot, Cross-domain few-
shot learning based on decoupled knowledge distillation for hyperspectral image 
classification, IEEE Trans. Geosci. Remote Sens. 62 (2024) 1–14, http://dx.doi.
org/10.1109/TGRS.2024.3476116.

[39] R.S. Michalski, 4 — A theory and methodology of inductive learning, in: R.S. 
Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning, Morgan Kauf-
mann, San Francisco (CA), 1983, pp. 83–134, http://dx.doi.org/10.1016/B978-0-
08-051054-5.50008-X, URL: https://www.sciencedirect.com/science/article/pii/
B978008051054550008X.

[40] M. Bianchini, A. Belahcen, F. Scarselli, A comparative study of inductive 
and transductive learning with feedforward neural networks, in: G. Adorni, 
S. Cagnoni, M. Gori, M. Maratea (Eds.), AI*IA 2016 Advances in Artificial 
Intelligence, Springer International Publishing, Cham, 2016, pp. 283–293, http:
//dx.doi.org/10.1007/978-3-319-49130-1_21.

[41] A. Rossi, M. Tiezzi, G.M. Dimitri, M. Bianchini, M. Maggini, F. Scarselli, 
Inductive–transductive learning with graph neural networks, in: L. Pancioni, F. 
Schwenker, E. Trentin (Eds.), Artificial Neural Networks in Pattern Recognition, 
Springer International Publishing, Cham, 2018, pp. 201–212, http://dx.doi.org/
10.1007/978-3-319-99978-4_16.

[42] Q. Zhang, Q. Li, G. Yu, L. Sun, M. Zhou, J. Chu, A multidimensional choledoch 
database and benchmarks for cholangiocarcinoma diagnosis, IEEE Access 7 
(2019) 149414–149421, http://dx.doi.org/10.1109/ACCESS.2019.2947470.

[43] M. Ganaie, M. Hu, A. Malik, M. Tanveer, P. Suganthan, Ensemble deep learn-
ing: A review, Eng. Appl. Artif. Intell. 115 (2022) 105151, http://dx.doi.org/
10.1016/j.engappai.2022.105151, URL: https://www.sciencedirect.com/science/
article/pii/S095219762200269X.

[44] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large 
graphs, Adv. Neural Inf. Process. Syst. 30 (2017).

[45] K. Wu, J. Fan, P. Ye, M. Zhu, Hyperspectral image classification using spectral–
spatial token enhanced transformer with hash-based positional embedding, IEEE 
Trans. Geosci. Remote Sens. 61 (2023) 1–16, http://dx.doi.org/10.1109/TGRS.
2023.3258488.

[46] H. Gao, S. Ji, Graph U-nets, IEEE Trans. Pattern Anal. Mach. Intell. 44 (9) (2022) 
4948–4960, http://dx.doi.org/10.1109/TPAMI.2021.3081010.

http://dx.doi.org/10.1038/s41598-019-54139-5
http://dx.doi.org/10.1038/s41598-019-54139-5
http://dx.doi.org/10.1038/s41598-019-54139-5
http://dx.doi.org/10.1016/j.rse.2007.12.014
http://dx.doi.org/10.1016/j.rse.2007.12.014
http://dx.doi.org/10.1016/j.rse.2007.12.014
http://dx.doi.org/10.1016/j.eswa.2019.04.006
http://dx.doi.org/10.1016/j.eswa.2019.04.006
http://dx.doi.org/10.1016/j.eswa.2019.04.006
https://www.sciencedirect.com/science/article/pii/S0957417419302374
https://www.sciencedirect.com/science/article/pii/S0957417419302374
https://www.sciencedirect.com/science/article/pii/S0957417419302374
http://dx.doi.org/10.1016/j.eswa.2023.121032
https://www.sciencedirect.com/science/article/pii/S0957417423015348
http://dx.doi.org/10.1016/j.eswa.2023.121007
http://dx.doi.org/10.1016/j.eswa.2023.121007
http://dx.doi.org/10.1016/j.eswa.2023.121007
https://www.sciencedirect.com/science/article/pii/S0957417423015099
https://www.sciencedirect.com/science/article/pii/S0957417423015099
https://www.sciencedirect.com/science/article/pii/S0957417423015099
http://dx.doi.org/10.1109/TNNLS.2023.3238506
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb18
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb18
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb18
http://dx.doi.org/10.1109/TGRS.2025.3549049
http://dx.doi.org/10.1109/TGRS.2025.3549049
http://dx.doi.org/10.1109/TGRS.2025.3549049
http://dx.doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1117/1.JBO.19.1.010901
http://dx.doi.org/10.1109/TMI.2021.3049591
http://dx.doi.org/10.1109/TMI.2021.3049591
http://dx.doi.org/10.1109/TMI.2021.3049591
http://dx.doi.org/10.1109/TGRS.2018.2841823
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/LGRS.2019.2918719
http://dx.doi.org/10.1109/LGRS.2019.2918719
http://dx.doi.org/10.1109/LGRS.2019.2918719
http://dx.doi.org/10.1109/TGRS.2020.2999957
http://dx.doi.org/10.1109/TGRS.2020.2999957
http://dx.doi.org/10.1109/TGRS.2020.2999957
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/TMI.2019.2959609
http://dx.doi.org/10.1109/TMI.2019.2959609
http://dx.doi.org/10.1109/TMI.2019.2959609
http://arxiv.org/abs/2102.04306
http://arxiv.org/abs/1804.03999
http://dx.doi.org/10.1109/TBME.2020.3026683
http://dx.doi.org/10.1109/TBME.2020.3026683
http://dx.doi.org/10.1109/TBME.2020.3026683
http://dx.doi.org/10.1109/TNNLS.2024.3445136
http://dx.doi.org/10.1109/TNNLS.2024.3445136
http://dx.doi.org/10.1109/TNNLS.2024.3445136
http://dx.doi.org/10.1109/ICCE53296.2022.9730171
http://dx.doi.org/10.1109/ICCE53296.2022.9730171
http://dx.doi.org/10.1109/ICCE53296.2022.9730171
http://dx.doi.org/10.1109/TMI.2020.3024923
http://dx.doi.org/10.1109/TMI.2020.3024923
http://dx.doi.org/10.1109/TMI.2020.3024923
http://dx.doi.org/10.1109/LGRS.2018.2869563
http://dx.doi.org/10.1109/LGRS.2018.2869563
http://dx.doi.org/10.1109/LGRS.2018.2869563
http://dx.doi.org/10.1109/TGRS.2020.3015157
http://dx.doi.org/10.1109/TGRS.2019.2949180
http://dx.doi.org/10.1109/TGRS.2019.2949180
http://dx.doi.org/10.1109/TGRS.2019.2949180
http://dx.doi.org/10.1016/j.neucom.2022.06.031
http://dx.doi.org/10.1016/j.neucom.2022.06.031
http://dx.doi.org/10.1016/j.neucom.2022.06.031
https://www.sciencedirect.com/science/article/pii/S0925231222007329
https://www.sciencedirect.com/science/article/pii/S0925231222007329
https://www.sciencedirect.com/science/article/pii/S0925231222007329
http://dx.doi.org/10.1109/TGRS.2024.3476116
http://dx.doi.org/10.1109/TGRS.2024.3476116
http://dx.doi.org/10.1109/TGRS.2024.3476116
http://dx.doi.org/10.1016/B978-0-08-051054-5.50008-X
http://dx.doi.org/10.1016/B978-0-08-051054-5.50008-X
http://dx.doi.org/10.1016/B978-0-08-051054-5.50008-X
https://www.sciencedirect.com/science/article/pii/B978008051054550008X
https://www.sciencedirect.com/science/article/pii/B978008051054550008X
https://www.sciencedirect.com/science/article/pii/B978008051054550008X
http://dx.doi.org/10.1007/978-3-319-49130-1_21
http://dx.doi.org/10.1007/978-3-319-49130-1_21
http://dx.doi.org/10.1007/978-3-319-49130-1_21
http://dx.doi.org/10.1007/978-3-319-99978-4_16
http://dx.doi.org/10.1007/978-3-319-99978-4_16
http://dx.doi.org/10.1007/978-3-319-99978-4_16
http://dx.doi.org/10.1109/ACCESS.2019.2947470
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.engappai.2022.105151
https://www.sciencedirect.com/science/article/pii/S095219762200269X
https://www.sciencedirect.com/science/article/pii/S095219762200269X
https://www.sciencedirect.com/science/article/pii/S095219762200269X
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb44
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb44
http://refhub.elsevier.com/S0169-2607(25)00322-0/sb44
http://dx.doi.org/10.1109/TGRS.2023.3258488
http://dx.doi.org/10.1109/TGRS.2023.3258488
http://dx.doi.org/10.1109/TGRS.2023.3258488
http://dx.doi.org/10.1109/TPAMI.2021.3081010

	DC-MSSFF Net: Dule-channel multi-scale spatial-spectral feature fusion network for cholangiocarcinoma pathology high-resolution hyperspectral image segmentation
	Introduction
	Related works
	Machine learning-based methods
	Deep learning-based methods
	CNN-based approaches
	UNet-based approaches
	GCN-based transductive learning


	Method
	The framework of DC-MSSFF Net
	Data Pre-Processing
	Dimension reduction
	Pixel to superpixel assignment in MSFE-GCN channel

	Multi-Scale GCN spatial feature extraction channel
	Local subgraph network
	Global graph network

	Multi-Scale CNN Spectral Feature Extraction Channel
	Ensemble learning

	Experiments
	Dataset and implementation details
	Results
	Discussion
	Ablation studies

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


