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Abstract General and refined spatiotemporal simi-

lariton solutions are presented by introducing arbitrary

real temporal and spatial modulation functions that

construct flexible and controllable relationships

among dispersion, nonlinearity and external potential

in spatiotemporal modulation inhomogeneous system.

The modulated bright similariton (MBS), modulated

dark similariton (MDS) and modulated plane wave

(MPW) solutions are achieved by a general self-

similar transformation method, and modulated

dynamics of the MBS, MDS and MPW by choosing

Gaussian/periodic temporal function and periodic

spatial function. Furthermore, by applying self-similar

transformation to M-component spatiotemporal inho-

mogeneous nonlinear Schrödinger equations, M-com-

ponent spatiotemporal solutions are obtained and the

spatiotemporal modulated properties of 2-component

composite waves are studied in detail. The presented

results may open many new possibilities for genera-

tion and controlling of solitons.

Keywords Spatiotemporal modulation �
Similariton � Composite waves � Inhomogeneous

system

1 Introduction

Controllable solitons in inhomogeneous system,

which can exist under some constraint relationships

among group-velocity dispersion (GVD), nonlinearity

and external potential [1–6], have been investigated in

the frame of inhomogeneous Gross-Pitaevskii (GP) or

nonlinear Schrödinger (NLS) equations. Some ana-

lytic methods, such as Darboux transformations [7, 8],

Hirota bilinearizations [9, 10], neural networks

[11, 12] and self-similar transformations

[3, 4, 13–21], have been utilized to find different

families of soliton solutions including bright, dark,

kink, and gray solitons [13, 22, 23], breathers [7],

Peregrine (or rogue waves) [14, 16, 24–26], vortex

solitons [27], composite solitary waves [15, 20, 28],

dark-bright solitons [17] and vector solitons [29].

These analytical solutions have been applied to

investigate matter waves in Bose–Einstein conden-

sates (BEC) [2, 30] and optical solitons in nonlinear

optical systems [13, 14]. The amplitudes, trajectories

and spectrum of solitons are variously modulated in

spatial [1, 2, 7, 13, 15–19], temporal

[14, 20, 22, 24, 27–29, 31] and spatiotemporal

[3, 4, 21, 23, 25, 32] inhomogeneous systems, and
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self-similar soliton (i.e. similariton) evolutions have

been experimentally observed in nonlinear fiber

[33, 34].

In recent years, various solitons have been studied

in inhomogeneous system [5, 7–9, 13–17, 21, 22,

25, 28, 31, 35–38]. Tiofack et al. analyzed periodic

modulation Kuznetsov-Ma soliton whose shape and

position are controlled both by the intensity and

frequency of the modulation [35]. Zhong et al. inves-

tigated controllable optical rogue waves via temporal

[28, 31], spatial [39] and spatiotemporal [36] modu-

lations. Juan et al. constructed resonant, periodically

or quasi-periodically oscillating solitons depending on

potentials and nonlinearities in spatiotemporal coor-

dinates [3]. Liu et al. studied exact rogue wave

solutions on Gaussian [20] and bright soliton back-

grounds [37].

Motivated by these works, we construct more

general and refined spatiotemporal similariton solu-

tions including modulated bright similariton (MBS),

modulated dark similariton (MDS) and modulated

plane wave (MPW) through a new self-similar trans-

formation that can be used to establish the relationship

between spatiotemporal inhomogeneous nonlinear

Schrödinger (inNLS) equation and NLS equation.

Furthermore, we apply the self-similar transformation

to M-component spatiotemporal inNLS equations and

discuss spatiotemporal modulation properties of the

composite waves by classifying the parameters of the

wave number and the frequency shift when M = 2 in

detail. The results presented here may provide new

possibilities for control and generation of similaritons

in inhomogeneous nonlinear systems.

The analysis presented in this paper is organized as

follows. In Sect. 2, we derive more general and

refined exact similariton solutions of the spatiotem-

poral inNLS equation through a new self-similar

transformation. In Sect. 3, based on the introduced

arbitrary real Gaussian/periodic temporal modulation

function and periodic spatial modulation function, rich

dynamics of similaritons in spatiotemporal inhomo-

geneous systems are demonstrated in detail. In Sect. 4,

the spatiotemporal M-component spatiotemporal

inNLS equations are investigated and the spatiotem-

poral modulation properties of the composite waves

for the case of M = 2 are studied in detail. In Sect. 5,

we draw a conclusion with some discussions of our

results.

2 Exact similariton solutions of spatiotemporal

inNLS system

The homogeneous GP or NLS equations support rich

nonlinear wave solutions, such as bright, dark,

breathers [7], and rogue waves [14, 26], and so on

[15, 17, 27], which are employed to investigate the

dynamics of nonlinear waves. For the control of

nonlinear waves in time and/or space domain in

complex nonlinear physical system [1, 3, 28], the

propagation of nonlinear waves can be governed by

the following inNLS equation with spatiotemporal

modulated coefficients [3, 36]:

i
oQ

oz
þ ddðz; tÞ o

2Q

ot2
þ nrðz; tÞ Qj j2Qþ Vðz; tÞQ ¼ 0:

ð1Þ

Here, Q : Q(z, t) represents complex wave

envelope of electric fields, and z and t represent the

spatial and temporal coordinates, respectively. The

real spatiotemporal functions d(z, t), r(z, t) and V(z,

t) as well as real constants d and n describe the GVD,

nonlinearity and external potential, respectively.

Equation (1) is also used to model the dynamics of

matter waves in BEC [5], where z and t represent

normalized time and spatial coordinates, respectively.

Correspondingly, the functions d(z, t), r(z, t) and V(z,

t) are effective mass of the condensate, strength

management of atoms and trapping potential, respec-

tively. Recently, special solutions of Eq. (1) have been

found under some special cases of the spatiotemporal

constraints in spatiotemporal inhomogeneous systems

[3, 4, 21, 23, 25, 32, 36]. Here, we focus on seeking for

more general exact self-similar solutions of Eq. (1) by

introducing a new self-similar transformation for

exploring the abundant evolutions of spatiotemporally

modulated similaritons and composite waves in inho-

mogeneous systems.

2.1 Self-similar transformation

To construct more general and refined similariton

solutions of spatiotemporal inNLS equation, we

introduce a self-similar transformation
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Qðz; tÞ ¼ Bðz; tÞq ZðzÞ ¼
Z

f ðzÞdz; TðtÞ ¼
Z

gðtÞdt
� �

;

ð2Þ

where Z(z) and T(t) are the effective propagation

distance and self-similar time variable, B(z, t), f(z) and

g(t) are the introduced real functions, respectively.

Substituting Eq. (2) into Eq. (1) and applying the

conditions B(z, t) = A(t) and g(t) = 1/A2(t), where A(t)

is arbitrary non-zero real function, Eq. (1) can be

reduced to the standard NLS Eq. (3):

i
oqðZ; TÞ

oZ
þ d

o2qðZ; TÞ
oT2

þ n qðZ; TÞj j2qðZ; TÞ ¼ 0;

ð3Þ

where Z : Z(z) and T : T(t). Equation (3) describes

the evolutions of various nonlinear waves in optics

[40, 41], plasma [42] and hydrodynamics [43, 44] and

so on [45, 46]. Meanwhile, the coefficients of GVD,

nonlinearity and external potential in Eq. (1) should

satisfy the following constraint conditions:

dðz; tÞ ¼ f ðzÞA4ðtÞ; ð4Þ

rðz; tÞ ¼ f ðzÞ=A2ðtÞ; ð5Þ

Vðz; tÞ ¼ �df ðzÞA3ðtÞAttðtÞ: ð6Þ

To ensure that these conditions have actual physical

significance, the introduced function f(z) cannot be

zero. In particular, when A(t) and f(z) are non-zero

constants, the spatiotemporal inNLS Eq. (1) can

degenerate to the standard NLS Eq. (3). Since

A(t) and f(z) are arbitrary non-zero real functions,

the self-similar transformation (2) is a more general

one that can degenerate to the previously reported ones

in Refs. [14, 20, 24, 28, 31, 35, 37, 47, 48]. For

example, if setting A(t) in Gaussian form, i.e.

A(t) = exp(-t2/2b2), f(z) = 1 and d = 1/2, n = 1,

according to Eqs. (2), (4)–(6), the two self-similar

variables Z(z) and T(t) have the forms of Z(z) = $
f(z)dz = z, T(t) = $1/A2(t)dt = bp1/2Erfi(t/b)/2, where
Erfi(�) is imaginary error function, and the GVD,

nonlinearity and external potential take the forms d(z,

t) = d(t) = exp(-2t2/b2), r(z, t) = r(t) = exp(t2/b2)

and V(z, t) = V(t) = (b2–t2) exp(-2t2/b2)/(2b4), which

are the same with those in Ref. [24]. In Refs. [28, 31],

its potential V(z, t) is only the function of variable t in

the form of V(t) = d(t)(avt
2 ? bv), and A(t) satisfies

the equation A(t)tt ? (avt
2 ? bv)A(t) = 0 under d = 1,

n = 2, av = -1/4 and bv = n ? 1/2, where n is a non-

negative integer. Then A(t)tt ? (avt
2 ? bv)A(t) = 0

can be transformed into the parabolic cylinder differ-

ential equation with a solution A(t) = k1[c1Dn(t) ? c2
D-n-1(it)] [31], where c1 and c2 (c1c2[ 0) are two

integration constants and k1 = {1/[(2p)1/2n!]}1/2 is the
normalization constant, or A(t) = kDn(t) [28], where

k = 1/[(2p)1/2n!] is the normalization constant. In the

above expression, Dn(t) is a parabolic-cylinder func-

tion. In order to exhibit the generality of the self-

similar transformation (2), we compare it with those

reported in references, as shown in Table 1.

2.2 Exact solutions of spatiotemporally

modulated similaritons

Combining the self-similar transformation (2) with

Eqs. (4)–(6), Eq. (1) can be transformed into the

standard NLS Eq. (3) that possesses the solution of

q(Z, T) = h[v = T–T0–v(Z–Z0)] exp[i(xT-mZ ? /0)]

[49, 50], where x, m, v are connected with frequency

shift, wave number and velocity, T0, Z0, /0 are related

to initial time, position and initial phase, respectively.

Substituting the solution q(Z, T) into Eq. (3) yields:

ohðvÞ
ov

� �2
¼ g1 hðvÞ½ �2 þ g2 hðvÞ½ �4 þ c0; ð7Þ

v ¼ 2dx; g1 ¼
dx2 � m

d
; g2 ¼ � n

2d
; ð8Þ

where c0 is an integration constant that is different for

respective soliton solutions. According to Eq. (7), one

can obtain the bright wave solution:

hBðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx2d� mÞ

n

s
Sech

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

d

r
v

 !
; c0 ¼ 0

ð9Þ

where x2d[ (\) m, d[ (\) 0, n[ (\) 0; and the

dark solitary wave solution:

hDðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

n

s
Tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

�2d

r
v

 !
;

c0¼ dx2 � m

2dn
;

ð10Þ

where x2d[ (\) m, d\ ([) 0, n[ (\) 0; and the

plane wave solution:
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hPðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

n

s
; c0 ¼ dx2 � m

2dn
; ð11Þ

where x2d[ (\) m, n[ (\) 0.

Then, using the solitary wave solutions (9)–(11)

and the inverse process of the self-similar transforma-

tion Eq. (2), one can obtain the solutions of modulated

bright similariton (MBS), modulated dark similariton

(MDS) and modulated plane wave (MPW) solutions

for the spatiotemporal inNLS Eq. (1):

MBS solution

QMBS ¼ AðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx2d� mÞ

n

s
Sech

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

d

r Z
1=A2ðtÞdt � T0

�(

�2dx
Z

f ðzÞdz� Z0

� ���
ei x

R
1=A2ðtÞdt�m

R
f ðzÞdzþ/0

� 	
;

ð12Þ

MDS solution

QMDS ¼ AðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

n

s
Tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

�2d

r Z
1=A2ðtÞdt � T0

�(

�2dx
Z

f ðzÞdz� Z0

� ���
ei x

R
1=A2ðtÞdt�m

R
f ðzÞdzþ/0

� 	
;

ð13Þ

MPW solution

QMPW ¼ AðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d� m

n

s
ei x

R
1=A2ðtÞdt�m

R
f ðzÞdzþ/0

� 	
:

ð14Þ

It is obviously to see from Eqs. (12)–(14) that the

temporal modulation function A(t) is related to the

amplitude and chirp parameters and the spatial

modulation function f(z) is associated with the trajec-

tory and phase. Also, according to Eqs. (12)–(14), the

amplitudes and shapes of MBS, MDS and MPW can

be arbitrarily modulated by the A(t). What is more, the

intensity of QMPW is independent of f(z). Thus,

Eq. (14) can be used to describe exact bright and dark

(gray) soliton trains when setting A(t) = q0 ? q1Sech
[g1(t-t1)] ? q2Sech[g2(t-t2)] ? ��� ? qnSech[gn(t-tn)]

and A(t) = q0 ? q1Tanh
2[g1(t-t1)] ? q2Tanh

2[g2(t-t2)]

? ��� ? qnTanh
2[gn(t-tn)], where qn, gn and tn (n = 1, 2,

3, …) are the amplitude, width and initial position

parameters of n-bright and n-dark (gray) solitons by

setting f(z) = 1. Figure 1 depicts the evolutions of 5-bright

soliton and 5-gray soliton (see Fig. 1a and b) and the

corresponding profiles of the GVD, nonlinearity and

external potential (see Fig. 1c and d) in inhomogeneous

system.

In this paper, we focus on the dynamics of MBS,

MDS and MPW in spatiotemporal inhomogeneous

system under different temporal modulation function

A(t) and spatial modulation function f(z). In fact, for

special case of d = 1, n = 2, there exist abundant

solutions to NLS Eq. (3), such as bright solitons [50],

Akhmediev breathers and Ma breathers [51], and

rogue waves [52], which one can easily obtain their

similariton solutions of Eq. (1) through the inverse

transformation of Eq. (2).

3 Dynamical behaviors of spatiotemporally

modulated similaritons

Since both A(t) and f(z) are arbitrary temporal and

spatial real functions, the GVD, nonlinearity and

external potential are more general according to

Eqs. (4)–(6), meaning that spatiotemporal modulation

of similaritons can theoretically be realized at will,

which opens many new possibilities for generating and

controlling similaritons. In this section, we consider

the dynamics of MBS, MDS and MPW under typical

Table 1 Comparison of the self-similar transformation with previously reported ones

References A(t) f(z) Z(z) T(t)

[37, 48] ksech(kt) f(z) $f(z)dz t/(2k2) ? Sinh(2kt)/(4k3)

[24] exp(–t2/2b2) 1 z bp1/2Erfi(t/b)/2

[28, 31] k1[c1Dn(t) ? c2D–n–1(it)] 1 z $1/A2(t)dt

[14, 20] A(t) 1 z $1/A2(t)dt

[35, 47] 1 f(z) $f(z)dz t

This work arbitrary real function arbitrary real function $f(z)dz $1/A2(t)dt
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Gaussian/periodic temporal modulation function and

periodic spatial modulation function.

3.1 Similaritons with Gaussian-periodic

spatiotemporal modulation

The Gaussian temporal modulation function A(t) and

the periodic spatial function f(z) are considered as

A tð Þ ¼ b0 exp �t2=b2

 �

; f zð Þ ¼ gz1 sin ez1zð Þ; ð15Þ

where b0 and b stand for the magnitude and width

parameters of Gaussian-shape A(t), gz1 and ez1
describe the strength and frequency of the periodic

spatial function f(z). In this case, the effective

propagation distance and self-similar time have the

forms of Z(z) = -gz1cos(ez1z)/ez1 and T(t) = b(p/8)1/
2Erfi[21/2t/b]b0

-2/2. According to Eqs. (4)–(6), the

spatiotemporal inhomogeneous parameters of GVD,

nonlinearity and external potential take the forms of

d(z, t) = gz1b0
4exp(-4t2/b2)sin(ez1z), r(z, t) = gz1b0

-2

exp(2t2/b2)sin(ez1z) and V(z, t) = 2dgz1b0
4exp(-4t2/

b2)(b2-2t2)sin(ez1z)/b
4, respectively. Figure 2 pre-

sents the dynamics of MBS, MDS and MPW modu-

lated by Gaussian temporal modulation function

A(t) and periodic spatial modulation function f(z). As

shown in Fig. 2a and d, the evolution trajectories of

the MBS and MDS are in a straight line when x = 0

although d(z, t) and r(z, t) are periodic along the

propagation distance. This is in accordance with the

solutions of MBS (Eq. 12) and MDS (Eq. 13), i.e. the

MBS and MDS have zero velocity when x = 0.

Interestingly, the evolutions of MDS present double

solitons due to Gaussian-shape d(z, t) and r(z, t) with

wider distributions along the temporal coordinates

(see Fig. 2d–f). However, when x = 0, the evolution

trajectories of MBS and MDS are periodic because of

periodic d(z, t) and r(z, t) along the propagation

distance (see Fig. 2b, c and e, f), which can be

explained by v = T(t)-T0-v[Z(z) -Z0], and the

evolution trajectory range in temporal coordinate can

be modulated by the parameter b (see Fig. 2b, c or e,

f). According to Eq. (14), the intensity of MPW is

|QMPW|
2 = A2(t)(x2d-m)/n, which indicates that the

evolution trajectory of the MPW is independent of the

spatial modulation function f(z) while the distribution

of MPW is strongly dependent on the temporal

modulation function A(t), exhibiting a Gaussian shape

in time coordinates (see Fig. 2g, h and i). It is noted

that the intensities are different between Fig. 2g and h

as the intensity of QMPW is dependent on x.

3.2 Similaritons with periodic-periodic

spatiotemporal modulation

The temporal modulation function A(t) and spatial

modulation function f(z) are considered as

A tð Þ ¼ 1þ 0:5 cos eAtð Þ; f zð Þ ¼ gz2 sin ez2zð Þ; ð16Þ

where eA describes the frequency of periodic fluctu-

ations of the periodic temporal modulation function

A(t); and gz2 and ez2 describe the strength and

frequency of periodic spatial modulation function

f(z). In this case, the effective propagation distance and

self-similar time have the forms Z(z) = -gz2cos(ez2z)/
ez2, T(t) = 4{4 9 31/2arctan[tan(eAt/2)/3

1/2][2 ? cos(eAt)]
-3sin(eAt)}[2 ? cos(eAt)]

-1/(9eA). According to

Eqs. (4)–(6), the spatiotemporal inhomogeneous

parameters of GVD, nonlinearity and external poten-

tial take the forms of d(z, t) = gz1[1 ? 0.5cos(eAt)]
4-

sin(ez2z), r(z, t) = gz2[1 ? 0.5cos(eAt)]
-2sin(ez2z) and

Fig. 1 The evolutions of a 5-bright and b 5-gray solitons. c 5-

bright and d 5-gray soliton profiles of GVD, nonlinearity and

external potential. The adopted 5-bright parameters are q0 = q1 =
q2 = q3 = q4 = q5 = 1, and 5-gray parameters are q0 = 0.1,

q1 = q2 = q3 = q4 = q5 = 0.2. The other parameters are

t1 = -6, t2 = -3, t3 = 0, t4 = 3, t5 = 6. g1 = g2 = g3 = g4 = g5 =
2, respectively
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V(z, t) = eA
2dgz2cos(eAt)[2 ? cos(eAt)]

3sin(ez2z)/16,
respectively. Similarly, according to the expressions

of MBS and MDS solutions (12) and (13), when

x = 0, the velocities of MBS and MDS are indepen-

dent of z, leading to a straight propagation (see Fig. 3a

and c), while have eriodic profiles about time t due to

periodic modulation. However, when x = 0, both

MBS and MDS exhibit periodic characteristics both in

spatial and temporal coordinates (see Fig. 3b and d).

For the MPW, it shows straight transmission along the

propagation distance with the periodic distribution in

temporal coordinates whether x is zero or not (see

Fig. 3e and f), which can be explained by the MPW

solution (14) whose intensity is independent of z, only

the phase shift is related the spatial modulation

function f(z).

Furthermore, we discuss the stability of the simi-

laritons (12)–(14) with periodic-periodic spatiotem-

poral modulation by adding 10% random white noise

on their background and 10% amplitude fluctuation in

the initial pulses. Figure 4a–c and d–f respectively

present the numerical results of MBS, MDS andMPW

corresponding to above two perturbed ways. By

comparing with Fig. 3a, c and e, it is shown that the

Fig. 2 The evolutions of the a–c MBS with m = -1, d = n =

1; d–f MDS with m = -1, d = –n = -1; g–i MPW with

m = -1, d = -n = -1 in the system (15) under Gaussian-

periodic spatiotemporal modulation with the parameters a, d,

g b = 1,x = 0, b, e, h b = 1,x = 0.5, c, f, i b = 5,x = 0.5. The

other parameters are Z0 = T0 = 0, gz1 = 1, ez1 = 1, u0 = 0,

respectively
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MBS, MDS and MPW can propagate in a stable way

and keep their main evolution characteristics under the

random white noise perturbation and initial amplitude

fluctuation.

4 Similaritons of M-component spatiotemporal

inNLS equations

In this section, we expand and apply the self-similar

transformation (2) into M-component spatiotemporal

inNLS equations and investigate the dynamics of

composited similariton waves in inhomogeneous

multi-mode fiber which can be described by the

following equations [14, 53–55]:

i
oUj

oz
þ ddðz; tÞ o

2Uj

ot2
þ nrðz; tÞ a1 Uj

�� ��2þa2
XM

l¼1;l6¼j

Ulj j2
 !

Uj

þna3rðz; tÞ
XM

l¼1;l6¼j

U2
l U

�
j þ Vðz; tÞUj ¼ 0; j ¼ 1; 2; :::;M;

ð17Þ

where a1, a2 and a3 represent self-phase modulation,

cross-phase modulation and coherent four-wave mix-

ing coupling effects, respectively. Former works have

studied some special cases as M = 2, d = 1, n = 2,

a1 = 1, a2 = 2, a3 = -2 in Ref. [14], M = 2, 3, d = 1,

n = 2, a1 = a2 = 2, a3 = 0 in Ref. [20] and M = 2,

d = 1, n = 2, a1 = a2 = 1, a3 = 0 in Ref. [28].

In the same way, combining self-similar transfor-

mation Uj(z, t) = A(t)uj[Z(z) = $f(z)dz, T(t) = $1/
A2(t)dt] with Eqs. (4)–(6), we can transform Eq. (17)

into M-component NLS equations as the following

form [14, 56]:

i
ouj
oZ

þ d
o2uj
oT2

þ n a1 uj
�� ��2þa2

XM
l¼1;l 6¼j

ulj j2
 !

uj

þ na3
XM

l¼1;l 6¼j

u2l u
�
j ¼ 0; j ¼ 1; 2; :::;M:

ð18Þ

Theoretically, we can investigate the spatiotempo-

ral modulation of similaritons in M-component spa-

tiotemporal system based on the above self-similar

transformation and the solutions of Eq. (18). To our

knowledge, even the case of M = 2, a1 = 1, a2 = 2,

Fig. 3 The evolutions of the a, bMBS, c, dMDS and e, fMPW in the system (16) under periodic-periodic spatiotemporal modulation.

The parameters are eA = 1, gz2 = 1, ez2 = 1, respectively. The other parameters are the same as Fig. 2a, b, d, e and g, h
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and a3 = 1 has not been addressed before. For

simplicity, here we consider the 2-component spa-

tiotemporal system. Using the assumption u1 = (q1-
? q2)/2 and u2 = (q1-q2)/2 [15, 57], Eq. (18) can be

decoupled to iqjZ ? dqjTT ? n|qj|
2qj = 0, where j = 1,

2, which has the same form as Eq. (3). So the solutions

of 2-component spatiotemporal inNLS equations are

Uj ¼
AðtÞ
2

h1 v ¼
Z

1=AðtÞ2dt � T01 � m1

Z
f ðzÞdz� Z01

� �� �

ei x1

R
1=A2ðtÞdt�m1

R
f ðzÞdzþ/01

� 	

�ð�1Þ jh2 v ¼
Z

1=AðtÞ2dt � T02 � m2

Z
f ðzÞdz� Z02

� �� �

ei x2

R
1=A2ðtÞdt�m2

R
f ðzÞdzþ/02

� 	�
; j ¼ 1; 2:

ð19Þ

where hj[v] (j = 1, 2) is one of the solutions (9)–(11).

The 2-component solutions (19) imply that there exist

a variety of highly-controllable composite waves in

the inhomogeneous fiber systems due to arbitrary

temporal modulation function A(t) and spatial modu-

lation function f(z), although the parameters of GVD,

nonlinearity and external potential relationships need

to satisfy Eqs. (4)–(6). Combining Eq. (19) and the

solutions (9)–(14) with the existence conditions,

MBS–MDS composite waves are not supported due

to their incompatible parameters d and n for MBS and

MDS, then five kinds of composite waves, such as

MBS–MBS, MDS–MDS, MPW–MPW, MBS–MPW,

MDS–MPW, in 2-component inhomogeneous system

with spatiotemporal modulation can be obtained. Here

only MDS–MDS, MPW–MPW and MDS–MPW

composite waves are investigated as examples, other

two composite waves may be discussed if readers are

interested.

The considered temporal modulation function

A(t) and spatial modulation function f(z) are the same

as Eq. (15), and the corresponding parameters of

GVD, nonlinearity and external potential relationships

can be obtained according to Eqs. (4)–(6). For the

convenience of discussion, we classify spatiotemporal

modulation properties of the composite waves by the

parameters of the wave number m and the frequency

shift x.
Case 1: When x1 = x2 = 0 and m1 = m2 = m,

according to Eq. (19), the intensities of MDS–MDS,

Fig. 4 The numerical evolution of a, dMBS, b, eMDS and c, fMPWby adding 10% randomwhite noise (top row) and 10% amplitude

fluctuation. The other adopted parameters are the same as in Fig. 3a, c and e, respectively
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MPW–MPW, and MDS–MPW are presented as

follows:

Uj

�� ��2¼ A2ðtÞ h21ðvÞ þ h22ðvÞ � ð�1Þ j2h1ðvÞh2ðvÞ
�

cos /02 � /01ð Þ�=4; j ¼ 1; 2;

ð20Þ

where hj(v) = hj[v = $1/A2(t)dt-T0j]. It is obvious to

see from Eq. (20) that the intensities of |Uj|
2 are

independent of the spatial modulation function f(z),

resulting in that the composite waves in this case are

not spatially modulated. In general, two components

of the composite waves (20) have different intensities,

i.e. |U1|
2
=|U2|

2. For example, when /01-/02 = lp,
where l is an integer, the intensity of the MDS–MDS

wave is |UjMDS–MDS|
2 = A2(t)|m/(4n)|{Tanh[(m/2d)1/

2v1] –(-1)j?lTanh[(m/2d)1/2v2]}
2, where vj = $1/A2

(t)dt-T0j (j = 1,2), and its two components respec-

tively exhibit double-peak bright soltion and single-

peak bright soliton due to the Gaussian-shape d(z,

t) and r(z, t) modulation, as shown in Fig. 5a. When

/01-/02 = lp, the intensity of MPW–MPW is

|UjMPW–MPW|
2 = A2(t)|m/(2n)|[1–(-1)jcos(/01-/02)]

and its two components show bright and bright waves

because of Gaussian-shape temporal modulation func-

tion A(t) in Fig. 5b. For MDS–MPW composite wave,

its intensity is |UjMDS–MPW|
2 = A2(t)|m/

(2n)|{1 ? Tanh2[(m/2d)1/2v]– (-1)j2Tanh[(m/2d)1/
2v]cos(/02-/01)}, showing right-soliton (Fig. 5c1)

and left-soliton (Fig. 5c2). It should be note that when

/01-/02 = (2 l ? 1)p/2, two components of the

composite waves (20) have the same intensities, i.e.,

|U1|
2 =|U2|

2, which are not presented here.

Case 2: When x1 = x2 = 0, m1 = m2 = m, and

v = 0. Then, the intensities of the composite waves

have the same form as that in Eq. (20) except

hj = hj[v = $1/A2(t)dt–T0j–v($f(z)dz–Z0j)]. This means

that in this case, the composite waves (19) can be

spatially and temporally modulated except for the

MPW–MPW because the MPW is independent of

v according to the solution of Eq. (14). As the

evolution of the MPW–MPW is only in intensity

different from Fig. 5b according to Eqs. (14) and (19),

we do not present it here. Interesting, the evolution of

the MDS–MDS appears zipper-like and snake-like

forms shown in Fig. 6a, while the evolution of the

MDS–MPW shows right-zipper and left-zipper form

in Fig. 6b. Moreover, these evolutions of both MDS–

MDS and MDS–MPW are periodic along with the

propagation distance and localized in temporal coor-

dinates in Figs. 6a and 5b because of periodic f(z) and

Gaussian-shape A(t), respectively.

Case 3: When x1 = x2 and m1 = m2 = m, the

intensities of components of the composite waves can

be written as the following forms:

Uj

�� ��2¼ A2ðtÞ

h21 þ h22 � ð�1Þ j2h1h2 cos

�
x2 � x1ð Þ

Z
AðtÞ�2dt þ /02 � /01ð Þ

��
=4; j ¼ 1; 2:

ð21Þ

When x1 = x2, the evolutions of MDS–MDS,

MPW–MPW and MDS–MPW are multi-peak in

temporal as shown in Fig. 7a, b and c, which can be

explained by the term h1h2cos[(x2–x1)$1/A
2

(t)dt ? (/02–/01)] in Eq. (21). Moreover, the inten-

sity evolutions of MDS–MDS and MDS–MPW are

more interestingly modulated in spatial coordinates

due to v = $1/A2(t)dt–T0–v($f(z)dz –Z0). While, the

intensity evolution ofMPW–MPW is not modulated in

spatial coordinates because of the intensity of MPW is

independent of periodic f(z) according to Eq. (14).

Case 4: When x1 = x2 = x, m1 = m2, the inten-

sities of components of the composite waves can be

written as the following forms:

Uj

�� ��2¼ A2ðtÞ

h21 þ h22 � ð�1Þ j2h1h2 cos

�
m1 � m2ð Þ

Z
f ðzÞdzþ /02 � /01ð Þ

��
=4; j ¼ 1; 2:

ð22Þ

In this case, the evolutions of MDS–MDS, MPW–

MPW and MDS–MPW are periodic in spatial coordi-

nates due to the existing term h1h2cos[(m1–m2)

$f(z)dz ? (/02–/01)] in Eq. (22). When x = 0, the

trajectory evolutions of MDS–MDS and MDS–MPW

are independent of periodic spatial modulation func-

tion f(z) as shown in Fig. 8a and c by reason of

hj = hj[v = $1/A2(t)dt–T0j]. On the other hand, when

x = 0, i.e. v = 0, the intensity evolutions of MDS–

MDS and MDS–MPW are related to periodic spatial

modulation function f(z) as shown in Fig. 8d and f by

reason of hj = hj[v = $1/A2(t)dt–T0j–v($f(z)dz –Z0j)].

In addition, whether x are equal to zero or not, the

evolutions of composite waves are periodic in spatial

coordinates due to the term (m1–m2)$f(z)dz in Eq. (22),
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but the dynamics of MPW–MPW is always travels

along the same path because of h[v] which is

independent of periodic spatial modulation f(z) accord-

ing to Eqs. (14) and (22) and the intensities are

different due to the term hPj = [(x2d–mj)/n]
1/2 in

Eq. (22) as shown in Fig. 8b and e.

Case 5: When x1 = x2, m1 = m2, the intensities

of components of the composite waves can be written

as the following forms:

Uj

�� ��2 ¼ A2ðtÞ h21 þ h22 � ð�1Þ j2h1h2 cos x2 � x1ð Þ
Z

1=AðtÞ2dt
�

þ ðm1 � m2Þ
Z

f ðzÞdzþ ð/02 � /01Þ
��

=4; j ¼ 1; 2:

ð23Þ

In this case, the intensity evolutions of MDS–MDS,

MPW–MPW and MDS–MPW are periodic in spatial

and multi-peak in temporal coordinates as shown in

Fig. 9 because of the term (m1–m2)$f(z)dz and (x2–

x1)$1/A
2(t)dt in Eq. (23), respectively. The periodic

evolution trajectories of MDS–MDS, MPW–MPW

and MDS–MPW can be ducuced by hj = hj[v = $1/
A2(t)dt–T0j–v($f(z)dz –Z0j)] where f(z) is periodic

along the propagation distance. Interestingly, the

intensity evolutions of MDS–MDS and MDS–MPW

(Fig. 9a and c) are more complex than others cases due

to the term h1h2cos[(x2–x1)$1/A
2(t)dt ? (m1–

m2)$f(z)dz ? (/02–/01)].

Fig. 5 The evolutions of the composite waves a MDS–MDS,

bMPW–MPW, cMDS–MPW in the system (15) for Case 1. The

corresponding parameters of MDS and MPW are the same as in

Fig. 2d and h, and the other parameters are a u02 = 0, T01 = –

T02 = 0.8, Z01 = Z02 = 0, bu02 = p/2, T01 = T02 = 0, Z01 = Z02-
= 0, c u02 = 0, T01 = T02 = 0, Z01 = Z02 = 0, respectively

Fig. 6 The evolutions of

the composite waves

a MDS–MDS, b MDS–

MPW in system (15) for

Case 2. The corresponding

parameters are the same as

in Fig. 5a, c, except for

b = 4, x1 = x2 = 0.5
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Fig. 7 The evolutions of composite waves a MDS–MDS, b MPW–MPW, c MDS–MPW in the system (15) for Case 3. The

corresponding parameters are the same as in Fig. 5, except for b = 8, x1 = -x2 = -0.5

Fig. 8 The evolutions of composite waves a, d MDS–MDS, b, e MPW–MPW, c, f MDS–MPW in the system (15) for Case 4. The

corresponding parameters are the same as in Fig. 7, except for b = 4, m1 = -2, m2 = -1, a–c x = 0, d–f x = 0.5
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5 Conclusion and discussion

In this work, we have reported more general and

refined similariton solutions includingMBS,MDS and

MPW, and established the relationship between spa-

tiotemporal inNLS equation and NLS equation by a

new self-similar transformation method. What is

more, the more flexible and controllable relationships

among dispersion, nonlinearity and external potential

are constructed by introducing arbitrary temporal and

spatial modulation functions. To demonstrate the

spatiotemporal modulation properties, we investigated

the dynamics of MBS, MDS andMPWwith Gaussian/

periodic temporal modulation and periodic spatial

modulation. Furthermore, we discussed the stability of

MBS, MDS and MPW in periodic-periodic spatiotem-

poral modulation system under 10% random white

noise perturbation and 10% initial amplitude fluctua-

tion. The numerical results show that the similaritons

can keep stable evolutions after propagating 500

dispersion lengths. The reported various solitons with

infinite-width background may raise the experiment

and potential application possibility in nonlinear

optics under the Gaussian-shape temporal modulation

function [24, 58], and the periodic similaritons in

temporal coordinates are easily obtained by periodic-

shape temporal modulation function A(t) modulation

[14, 20].

The self-similar transformation reported in this

work has been applicable for studying M-component

spatiotemporal inNLS systems. As example, we

studied the case of M = 2 and classified spatiotempo-

ral modulation properties of the composite waves by

the wave number m and frequency shift x parameters,

which have shown the rich modulations. For the case

of multi-component (M C 2) wave interaction, it

maybe involve some novel and interesting dynamics,

which will be investigated in the future. Our work may

open many new possibilities for generation and

controlling similaritons. Moreover, the general and

refined solutions benefit the theoretical studies and

respective experimental realization in spatiotemporal

inNLS and M-component spatiotemporal inNLS

systems.
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