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Interpretable Inference and Classification of
Tissue Types in Histological Colorectal Cancer

Slides Based on Ensembles Adaptive
Boosting Prototype Tree

Meiyan Liang , Ru Wang, Jianan Liang, Lin Wang , Bo Li, Xiaojun Jia , Yu Zhang, Qinghui Chen,
Tianyi Zhang , and Cunlin Zhang

Abstract—Digital pathology images are treated as the
“gold standard” for the diagnosis of colorectal lesions,
especially colon cancer. Real-time, objective and accurate
inspection results will assist clinicians to choose symp-
tomatic treatment in a timely manner, which is of great
significance in clinical medicine. However, Manual methods
suffers from long inspection cycle and serious reliance on
subjective interpretation. It is also a challenging task for ex-
isting computer-aided diagnosis methods to obtain models
that are both accurate and interpretable. Models that ex-
hibit high accuracy are always more complex and opaque,
while interpretable models may lack the necessary accu-
racy. Therefore, the framework of ensemble adaptive boost-
ing prototype tree is proposed to predict the colorectal
pathology images and provide interpretable inference by vi-
sualizing the decision-making process in each base learner.
The results showed that the proposed method could ef-
fectively address the “accuracy-interpretability trade-off”
issue by ensemble of m adaptive boosting neural proto-
type trees. The superior performance of the framework
provides a novel paradigm for interpretable inference and
high-precision prediction of pathology image patches in
computational pathology.

Manuscript received 22 September 2022; revised 1 April 2023 and
5 June 2023; accepted 17 October 2023. Date of publication 23 Oc-
tober 2023; date of current version 6 December 2023. This work was
supported in part by the National Natural Science Foundation of China
under Grant 11804209, in part by the Natural Science Foundation
of Shanxi Province under Grants 201901D211173, 201901D211172,
and 202103021223411, and in part by the Research Project Sup-
ported by Shanxi Scholarship Council of China under Grant 2023-010.
(Corresponding authors: Meiyan Liang; Lin Wang; Xiaojun Jia.)

Meiyan Liang, Ru Wang, Jianan Liang, Xiaojun Jia, Yu Zhang, Qinghui
Chen, and Tianyi Zhang are with the School of Physics and Electronic
Engineering, Shanxi University, Taiyuan 030006, China (e-mail: meiyan-
liang@sxu.edu.cn; w425902505@163.com; liangjianan@sxu.edu.cn;
jiaxj@sxu.edu.cn; 1827575063@qq.com; c13253754272@163.com;
tianyizhangsxu@163.com).

Lin Wang is with the Shanxi Bethune Hospital, Shanxi Academy
of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of
Shanxi Medical University, Taiyuan 030032, China (e-mail: 136134110
69@139.com).

Bo Li is with the Department of Rehabilitation Treatment, Shanxi
Rongjun Hospital, Taiyuan 030000, China (e-mail: mvplibo@163.com).

Cunlin Zhang is with the Beijing Key Laboratory for Terahertz Spec-
troscopy and Imaging, Key Laboratory of Terahertz, Optoelectronics,
Ministry of Education, Capital Normal University, Beijing 100048, China
(e-mail: cunlin_zhang@cnu.edu.cn).

Digital Object Identifier 10.1109/JBHI.2023.3326467

Index Terms—Adaptive boosting, colorectal cancer,
ensemble learning, interpretable inference, prototype tree.

I. INTRODUCTION

ACCORDING to the “GLOBOCAN 2020” released by
International Agency for Research on Cancer (IARC) of

World Health Organization (WHO), it is estimated 1.9 million
new colorectal cancer (including anus) cases and 935000 deaths
were estimated to occur in 2020, representing about one in
ten cancer cases and deaths. Overall, colorectal cancer ranks
third in terms of incidence, but second in terms of mortality
worldwide [1]. However, the clinical prediction of colorectal
cancer mainly relies on manual feature extraction and analyza-
tion of pathological images, suffering from long inspection cycle
and severe reliance on subjective interpretation, which cannot
meet the requirements of precision medicine. Therefore, it is of
great significance to establish a real-time, objective, and accu-
rate pathological image prediction model that provides human-
interpretable features automatically in medical image analysis
[2], [3], [4]. Deep convolutional networks (ConvNets) [5] have
been widely applied in large-scale image classification tasks [6],
[7], [8], [9] due to their excellent prediction performance and
fewer parameters [10], [11]. In ConvNets, the neurons between
the convolutional layers are connected by a weight sharing
mechanism and activated by nonlinear functions. Therefore, the
input image is progressively transformed into semantic features
through multiple layers, resulting in its lack of interpretability.
Hence, deep convolutional neural networks are generally per-
ceived as a “black boxes” that can approximate any nonlinear
function. A neural network capable of providing interpretability
for learned functions is an important criterion for evaluating the
reliability of the neural networks [12], [13], [14]. Therefore, it
is of great significance to carry out the interpretability studies
of deep learning in practical applications, especially in medical
image processing.

In computer vision tasks, various interpretability strategies
have been proposed for different notions of interpretability [15],
[16], [17], [18]. In 2009, Erhan [19] et al. presented an activation
maximization to visualize the features learned by the deep
learning model, which utilized the gradient ascent algorithm
to generate feature representations with higher activation values
of neurons in each layer. It can also be applied to visualize the
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learned features of the unsupervised deep learning models, such
as Deep Belief Network (DBN) [20]. In 2014, Zeiler [21] et al.
introduced a deconvolutional network that maps the activity of
the convolutional layers in a ConvNet back to the input pixel
space, showing which input patterns originally led to a given
activation in the feature map. Afterwards, Simonyan [22] et al.
extended the application of deconvolution-based visualization
approaches to obtain their relationship with the gradient-based
visualization methods [23], [24], and concluded that gradient
based visualization can be regarded as the generalization of
deconvolution based methods [25]. This is because the gradient
based visualization techniques can be applied to any active layer,
not just the convolutional layer. Other gradient based methods
include a series of algorithms related to class activation maps
(CAMs) [26] to visualize the learned pattern of model. In 2019,
Selvaraju [27] et al. developed a Gradient Weighted Class Ac-
tivation Mapping (Grad-CAM) to visualize the learned features
of the attention-based model. The heat map uses the gradient of
the target concept following the final convolutional layer to
generate a coarse localization map, highlighting important re-
gions of the image to predict the target concept. However, the
interpretable models either based on activation maximization
or gradient explain input images by visualizing the learned
features, which can only be applied to a trained network and
cannot provide the inference process of the model. Whereas,
the attention-based deep learning model can only visualize the
key parts of the input image, thus lacking interpretability for the
overall category.

To improve the reliability of the model, recent interpretable
inference study is mainly based on the intrinsic understanding
of the learned patterns, such as concept attributions and proto-
types. In 2017, Bau [28], [29] et al. attempted to quantify the
interpretability of latent representations in CNNs by measuring
the overlap between highly activated image regions and labeled
visual concepts. However, this method required fine-grained
manual labeling for large datasets specific to network purposes.
In 2018, Li et al. [30] proposed an interpretable autoencoder ar-
chitecture with an embedded prototype layer to generate feature
representations for learned prototype in latent space. Afterwards,
the learned prototype can be visualized by inverse transform of
the feature representations using decoder. Since this approach
of generating interpretable prototypes with decoder is derived
from the features in the latent space, it cannot map the prototypes
to the practical training image space, resulting in a lack of
human-interpretability for the generated prototypes. Therefore,
Chen et al. [31] introduced a Prototype Part Network (ProtoP-
Net) architecture, which searched for image parts in the training
set corresponding to learned prototypes in the latent space to
define the interpretability. However, these post-hoc interpretable
methods can only visualize the learned features of the “black
box” for final prediction. The causes of learned features cannot
be tracked if the model produces interpretations that do not make
sense to human experts. Meanwhile, deep learning models that
exhibit high accuracy are always more complex and opaque,
while interpretable models may lack the necessary accuracy. It
is a challenging task for existing computer-aided diagnosis meth-
ods to obtain models that are both accurate and interpretable. To
address this issue, an ensembles of adaptive boosting prototype
tree network is proposed to perform fine-grained identification
for multi-class image patches in colorectal pathology slides. The
ensemble based method can not only achieve high-precision
prediction, but also provide intrinsic interpretability for the

prediction results through the visualization of decision-making
process. Meanwhile, it does not require manual labeling and
is very similar to human reasoning process, which opens up
new perspectives for reliable inferential diagnostic methods. Our
scientific contributions are as follows:

1) An Ensemble Adaptive Boosting neural prototype tree
architecture is proposed for fine-grained pathological
image classification, which combines neural prototype
tree with adaptive boosting algorithm, to improve the
overall prediction accuracy of the model and reduce bias
through sequentially focusing on poor predictions in the
previous base learner and attempting to rectify them in
the following round.

2) The inference process of the ensemble model is visualized
by prototypical parts from m subtrees based on the shifted
data distribution. The interpretability of the ensemble
model can also be improved by the prototypes obtained
from the complementary base learners. Meanwhile, this
approach also provides the class-related discriminative
features for the classification results.

3) We address the “accuracy-interpretability trade-off” issue
by ensemble of m adaptive boosting neural prototype
trees [31]. The method can not only effectively improve
the prediction accuracy for pathological image patches
by adaptive boosting algorithm, but also significantly en-
hance the reliability by visualizing the intrinsically inter-
pretable reasoning process the base learners. The superior
performance of the framework opens a new perspective
for high-precise and reliable inferential diagnosis.

II. PRINCIPLE OF ADAPTIVE BOOSTING ENSEMBLE

LEARNING

Boosting was proposed in the computational learning theory
literature [32], [33], [34], which sequentially applying a typical
classification algorithm to reweighted training data distribution
and then adopting a weighted voting strategy for the sequence
classifiers. This strategy can combine the performance of many
“weak” classifiers to produce a strong “committee” through
an additive model. Therefore, the adaptive boosting ensemble
learning can reduce the bias compared to using only a single
base learner.

Given a training dataset D = [x, y] = {(xi, yi)}Ni=1,
where N is the number of training data, xi and yi are
the ith input image and corresponding class label. Where
yi ∈ {0, 1, . . . , k, . . . ,K − 1}. If the number of classes K > 2,
it is known as a multi-class classification problem. Here,
the multinomial logit model has been applied for multi-class
pathology image classification issue. The class probabilities
that the i-th sample is predicted to be the k-th class can be given
by:

pi,k = Pr(yi = k|xi) =
eFi,k(xi)

∑K−1
k=0 eFi,k(xi)

(1)

and then predict each class label according to

ŷi = argmax
k

pi,k (2)

Here, ŷi is the predicted label of input image xi. The classi-
fication error occurs if ŷi �= yi. In (1), Fi,k = Fi,k(xi) denote
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the learned function from the training data. Pr(yi = k|xi) in-
dicates the probability that sample xi is predicted as the kth
class. For traditional logistic regression, it simply assume that
Fi,k(xi) = ωT

k xi (ω is the learned parameter). Therefore, the
subscript of Fi,k indicates that the function is learned from
the training set {xi}Ni=1, which has a total of k categories. For
ensemble learning framework, it can be expressed as F (m)(x)
when it is an ensemble representation of m base learners.

Boosting algorithm builds an additive model of the “weak”
classifiers (base learners) in a forward stage-wise fashion.
It improves the overall performance of the model by itera-
tively combining “weak” classifiers to form a strong learner
in a weighted manner. Therefore, the adaptive boosting model
with m base learners can be written as the sum of m terms:

F (m)(x) =
m∑

m=1

βmbm(x; γm) = F (m−1)(x) + βmbm(x; γm)

(3)
Where F (m−1)(x) is the ensemble of the previous m-1

base learners. bm(x; γm) denotes the mth base learner, typ-
ically a regression tree for inference based on interpretable
features. Here, γm and βm are a set of learned parameters and
weight of the mth weak learner, respectively. These parame-
ters are all learned iteratively through the forward stage-wise
distribution. m is the total number of base learners.

Hence, learning the additive regression model is to minimize
the loss function of the following at each stage m:

{β∗
m, γ∗

m} = argmin
βm,γm

N∑
i=1

Lclass(yi, F
(m−1) + βmbm(xi; γm))

(4)
Where β∗

m and γ∗
m are the optimized weights and learned

parameters of mth base learner in ensemble model, respec-
tively. Here, parameters {β∗

m}mm=1 and {γ∗
m}mm=1 can be ob-

tained recursively by the forward stage-wise training process
according (4). It is equivalent to minimizing the negative multi-
nomial log-likelihood (NML) loss:

Lclass = −
N∑
i=1

ri,k log pi,k (5)

Where ri,k is a one-bit binary variable indicating whether the
model has made correct predictions. Therefore, ri,k= 1 if yi = k
and ri,k= 0 when yi �= k.

Finally, the optimized {β∗
m}mm=1 and {γ∗

m}mm=1 are plugged
in (3) for ensemble prediction.

III. MODEL

A. The Framework of Ensembles Adaptive Boosting
Prototype Tree

Pathology slides diagnosis is based on multiple microscopic
structures and macroscopic features of tissues, such as the
morphology of cell nuclei, the ratio of nucleus to cytoplasm,
the geometry of gland and texture of tissue. As pathological
images from different organs have specific features, and the
patterns in colon histopathological slides are more complex than
others. Therefore, building a multi-classification model for col-
orectal pathological tissue images and visualizing interpretable
inference process are of great significance in clinical applica-
tions. Here, an Ensembles Adaptive Boosting Prototype Tree

Fig. 1. Block diagram of ensembles adaptive boosting prototype
tree.

(EnABPT) framework is proposed based on adaptive boosting
algorithm to achieve high-precision prediction for multi-class
colon image patches in digital pathology slides. Meanwhile,
the model also uses interpretable features as splitting criteria of
prototype tree to visualize the decision-making process, thereby
obtaining the entire inference process of the model.

The block diagram of Ensembles Adaptive Boosting Proto-
type Tree is shown in Fig. 1. The framework contains m Proto-
type Tree as base learners. During the iterative process, the base
learners sequentially applies the backpropagation algorithm to
the reweighted training data and then obtains the final prediction
results by a weighted soft voting strategy for these sequence
classifiers. The parameters γm and βm in each base learner are
also automatically obtained based on a forward-stage additive
regression model using a negative log-likelihood loss between
the predicted labels {ŷi}Ni=1 and the ground truth {yi}Ni=1. In our
case, γm is the learning parameter of mth base learner, which
includes the splitting variables, split points, the constants in each
leaf node and number of leaf nodes for each prototype tree.
The parameter βm is the learned weight of the base learner.
In our case, not only the base classifiers but also the training
samples are weighted in each base learner. Therefore, reweighted
training data distribution means that the probability of sampling
the confused samples will be adaptively boosted by the weighted
resampling strategy. Here, instead of passing sample weights to
the base learner, the training data can be resampled to reflect the
sample weight. The training dataset for each base learner is the
same size as the original dataset, which is created by sampling
and replacing the original training dataset. The probability of
each example being selected is proportional to its assigned
weight. Specifically, the process is as follows:

i) In the 1st base learner, we assign each example an
identical weight, which is set to 1/N. Here, N denotes
number of examples in the training set. This means that
the importance of correctly classifying samples is not
emphasized in the 1st round.

ii) After training process, the amount of say for this base
learner is calculated using the following formula:

β = 0.5 � log ((1− Er)/Er) (6)

Here, Er and β denote the classification error and the amount
of say (it is also known as coefficient/weight) of the base learner,
respectively. Where the amount of say depends on how well the
base learner classifies examples.
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Fig. 2. Interpretable inference process of the prototype tree.

This formula can be generalized to the m-th base learner, thus,
the weight of the m-th base learner is given by:

βm = 0.5 � log ((1− Erm)/Erm) (7)

Here, it is obviously thatβm decreases asErm increases. That
is, weak learners with larger classification errors are assigned
lower weights in the ensemble model.

iii) In the (m+1)-th round, for the correctly classified exam-
ple in previous round, the weights are updated as:

UpdatedWeightm+1=SampleWeightm �exp(−βm)
(8)

While for examples that were incorrectly classified in previous
round, the sample weight is updated using the formula:

UpdatedWeightm+1 = SampleWeightm � exp(βm) (9)

Note that the updated weights for correctly classified ex-
amples are lower than that of incorrectly classified examples.
This means that the following base learner focuses more on
incorrectly classified examples in the previous round. Therefore,
a new dataset is created based on the previous one such that it
contains more examples that were misclassified by the previous
base learner. Then, we normalize the updated sample weights
such that they sum to 1.

iv) A random number is sampled in the interval [0,1]. Then,
we obtain which weight range the number falls within
when the sample weights are viewed as a distribution.
Here, the probability of the sample being sampled is

proportional to the assigned weight of that sample. There-
fore, the probability of misclassified samples in the previ-
ous round will be significantly increased in the following
round.

The above process is repeated until the input datasets for each
base learner are obtained. It is obviously that the data distribution
have been shifted through the weighted resampling strategy.

B. The Principle of Neural Prototype Tree

In this framework, each base learner bm(x; γm) is a neu-
ral prototype tree, which is a combination of a convolutional
neural network (CNN) and a prototype tree with two routing
path per node, as shown in Fig. 2. Here, CNN is a truncated
ResNet-50, which can be represented by a mapping function
f [35]. Therefore, the latent feature map of image x in m-th
base learner zm=f(x;wm) is obtained by the f , which car-
ries the semantic feature information of each category, and is
treated as the input of the prototype tree (binary tree). Here,
zm ∈ R7×7×256, wm denote the parameters of the CNN in the
mth base learner. The binary tree consists of a leaf node set
L (l ∈ L) an internal node set N (n ∈ N) and an edge set ξ
(e ∈ ξ). Here, l, n and e denote the leaf node, the internal node
and the edge of the prototype tree, respectively. The number of
leaf node l depends on the number of input classes. The number
of the internal node n is determined by the height h of the
prototype tree. Here, n = 2h − 1. Each internal node has two
optional routing branches, which is initialized as a 1× 1× 256
latent trainable prototype. Here, the latent prototypes Pm

n of
the each prototype tree are obtained in a greedy manner under
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the guidance of the overall loss function [36]. In this process,
the CNN parameters wm in m-th branch are also obtained from
the hierarchical inference process. Hence, each latent prototype
Pm
n ∈ Pm represents a routing activation pattern for the model

inference process, which is close or even identical to the ob-
servations in the input image space. Where Pm denotes the
latent prototype set in the mth subtree, Pm

n is specifically the
nth latent prototype in mth base learner. It can be considered as
the most distinctive feature of two class or even two clusters.
The classification and inference process of the prototype tree is
shown in Fig. 2.

C. Prototype Visualization

As shown in Fig. 2, the learned latent prototype Pm
n can be

treated as a kernel “slides” over the all the extracted feature
maps {zm}Ni=1 in m-th base learner and mapped into the input
space according to the feature similarity. Therefore, the image
prototypical parts ρmn

∗ is obtained to ensure the interpretability
of input pathology image based on least Euclidean distance be-
tween the current image patch ρmn and the latent prototype Pm

n
using the minimum pooling operation:

ρmn
∗ = argmin

ρm
n ∈{zm}

||ρmn − Pm
n ||2 (10)

Here, ρmn
∗ denotes the n-th projected image patch closest to

the prototype image Pm
n in m-th base learner, which is also the

class-specific discriminative prototypical part in the input space.
Here, ρmn

∗ is also the visualized feature of a node in each proto-
type tree. In the implementation, the Euclidean distance criteria
also affects the routing of arbitrarily feature representation zm
through the corresponding node n.

D. Inference and Prediction

In our case, the decision tree is a series of decision stumps
arranged hierarchically in a top-down fashion, which means
an internal node can only route either ‘present’ path (right) or
‘absent’ path (left) with a probability within the interval [0,1].
It is also known as a soft decision tree [37], [38], [39], [40].
Here, we use e(n, n.right) ∈ ξ and e(n, n.left) ∈ ξ to denote
the routing path of present and absent, respectively. Therefore,
the probability of routing sample (zm) through the right path in
mth base learner is defined as:

pme(n,n.right)(zm) = exp(−||ρmn ∗ − Pm
n ||) (11)

Hence, the probability of routing through the left path can be
written as:

pme(n,n.left) = 1− pme(n,n.right) (12)

As defined by the soft decision strategy, all internal nodes
will be traversed through all edges (ξ) with a certain probability
to reach the terminal node, and the probability of reaching the
terminal node l is denoted as πl, which is the product of all
corresponding routings edges (e) :

πl(zm) =
∏
e∈el

pme (zm) (13)

Where el denotes the sequence of edges from the root node
to leaf node l.

Since the soft decision tree is applied in the implementation,
learning the distributions of the leaves is a global problem

in each base learner. Therefore, the terminal node contains a
trainable parameter cm,l, which represents the learned class
probabilities distribution of leaf l in the mth base learner. Thus,
the softmax functionσ should be applied on cm,l for each subtree
to normalize the distribution of class probabilities in the terminal
node.

For an input image x, the predicted class probability of mth
base learner is obtained by traversing all edges in the tree by its
latent representation zm = f(x|wm) such that all leaves con-
tribute to the final prediction ŷm. Therefore, the final prediction
of the mth base learner can be written as:

ŷm(x) =
∑
l∈L

σ(cm,l) · πl(zm) =
∑
l∈L

σ(cm,l) · πl(f(x|wm))

(14)
Here, the base learner updates the leaf distribution parameters

cm,l with iterative scheme of derivative-free algorithm [37]:

c
(t+1)
m,l =

∑
(x,y)

(
σ
(
c
(t)
m,l

)
� ym � πm,l

)
� ŷm (15)

Where superscript t is the training epoch in the iteration,
c
(t+1)
m,l and c

(t)
m,l denote the class probabilities distribution of leaf

l for the mth base learner in epoch t and t+ 1, respectively. Here,
{c(t)m,l}t are K-dimensional vectors. The initialized distribution

c
(0)
m,l can be an arbitrary value as long as every element is positive.

A typical choice of c(0)m,l is the uniform distribution in all leaves.
� is an element-wise multiplication operator. � represents the
element-wise division operation.

Therefore, the final prediction ŷ(x) of the EnABPT model
is obtained by weighted soft voting on the normalized class
probabilities of the m base learner ŷm(x). It can be written as:

ŷ(x) =
∑
m

βm · softmax(ŷm(x)) (16)

E. The Overall Loss Function of the EnABPT

In our framework, both the convolutional layer connection
weights {wm} and prototypes {Pm

n }nn=1 in each base learner
are jointly optimized to obtain an ensemble predictive model
including the reasoning process. Therefore, the overall loss
function of each base learner is not only related to the accuracy,
but also the interpretability. For image classification task, the
NML loss in (3) is used as part of the loss function to penalize
misclassified samples in the training set and improve the model
accuracy. Therefore, NML loss can optimize both layer connec-
tion weights and prototypes of each base learner. To improve
the interpretability of each sub model in the decision-making
process, a regularization term is formulated as follows:

LClus =
n∑

n=1

min
ρm
n ∈patches(f(xi))

||ρmn −Pm
n ||22 (17)

WhereLClus denotes the interpretable loss, which encourages
the projected prototypes to be closer to the learned prototypes
Pm
n in the latent space.
The obtained model is a trade-off between accuracy and

interpretability. Therefore, the overall loss of the base learner
Ltotal can be written as:

Ltotal = Lclass + λLClus (18)
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Fig. 3. Colon pathological image patches and corresponding interpretable features.

Here, λ is the coefficient of the LClus. In EnABPT, Ltotal

is iteratively applied on each base learner based on the forward
stage distribution algorithm to guide the ensemble model con-
vergence.

F. Database and Implementation Details

CRCH Dataset: It is one of the largest public H&E stained
pathology image datasets obtained from the National Cancer
Center of Heidelberg and the Medical Center of Heidelberg
University in Germany [41], [42].

The dataset contains about 100K non-overlapping human
colon pathology training images and 7180 testing images. The
training images were manually extracted from NTrain = 86
H&E stained human cancer tissue whole slides in the NCT
Biobank. The test images were extracted from another NTest

= 50 patients with colorectal adenocarcinoma, which have
non-overlap with those in the training set. This means that the
test set has a shifted data distribution with that of the training
dataset. These tissue images are belonging to nine distinct tissue
classes including Adipose (ADI), Lymphocytes (LYM), Normal
colon mucosa (NORM), Colorectal adenocarcinoma epithelium
(TUM), Mucus (MUC), Smooth muscle (MUS), Debris (DEB),
Cancer-associated stroma (STR) and Background (BACK). We
excluded BACK as this type is meaningless for the interpretable
classification process. we also made a trade-off between training
time, class imbalance and model performance. Therefore, a total
of 51200 non-overlapping colon tissue images are selected in

the training, and 6400 images are used to test the performance
of EnABPT model. Here, all the images are 224×224 pixels
(112 μm ×112 μm) at ∼1 microns per pixel (MPP). They are
color-normalized using Macenko’s method before input into the
framework. Fig. 3 shows eight main types of image patches and
their interpretable features in colonic pathology whole slides.

CRC-TP Dataset: It is the first large-scale public dataset of
H&E-stained human colon pathology images released by the
University Hospitals of Coventry and Warwickshire (UHCW)
[43], [44].

The image patches in CRC-TP dataset were manually
extracted from 20 colorectal whole slide images. It contains
about 280K non-overlapping image patches belonging to seven
distinct tissue phenotypes including Tumor, Stroma, Complex
Stroma, Muscle, Debris, Inflammatory and Benign, Here, each
patch was assigned to a unique label based on the majority of its
content. In this setting, 70% patches of each tissue phenotype
are randomly selected for training and the remaining 30% are
used for testing. Therefore, the patches may or may not belong
to the same patient. We also made a trade-off between training
time, class imbalance and model performance. Therefore, a total
of 98000 non-overlapping colon tissue images are selected in
the training, and 42000 images are used to test the performance
of model. Here, each patch consists of 150×150 pixels (75μm
×75 μm, 0.5 μm/px) extracted at 20× magnification level.

In the modeling process, the number of training data in each
base learner is identical, but the data distribution is adjusted by a
weighted random sampler so that subsequent models can focus
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED MODEL ON CRCH DATASET

on more confusing samples. Therefore, the overall classification
accuracy of the ensemble model can be improved by weighted
soft voting strategy of these sequence classifiers (base learner),
especially for confused samples. Meanwhile, the interpretability
of the model is also improved by mutual verification of these
complementary base learners. In the experiment, the number
of base learner m is set to 5, which is a trade-off between
accuracy, confidence and complexity of the ensemble model.
The maximum height of the Adaptive Boosting Prototype Tree is
initialized by defining h = 3 according to the image categories.
The initialized learning rate is 1× 10−5, the batch size is 32 and
the training epoch of each base learner in the experiments is set
to 100. The model is implemented on RTX 3060 (12G).

IV. RESULTS AND DISCUSSION

A. Accuracy

In our EnABPT framework, not only the training samples of
each base classifier but also the base classifiers themselves are
adaptively weighted in an ensemble learning model for boosting.
Table I shows that the classification accuracy of the ensembles
adaptive boosting prototype tree can reach 0.9780 on CRCH
dataset, which demonstrates the effectiveness of the proposed
model. The accuracy of each base learner can be obtained as
{0.9772, 0.9663, 0.9565, 0.9533, 0.9459}, and the correspond-
ing weights of the base learners are {0.2177, 0.2072, 0.1987,
0.1929, 0.1836}, respectively. The results demonstrated that the
accuracy and the weights of the base learner decrease as the
training rounds increases, and the base learner with higher ac-
curacy has the larger weight in EnABPT. This is because the base
learner can iteratively increase the weight of the misclassified
samples in the previous round, so that the following model could
be more attentive on these samples and attempt to correct them.
Therefore, although the accuracy of the sub model decreases
with the number of rounds, the overall prediction accuracy can
be improved evidently by ensembles of m complementary base
learners with weighted soft voting strategy.

Table I also compares the performance of EnABPT with
CNN + SVM, CNN-based method, SOTA decision-making

algorithms and conventional ensemble learning algorithms (such
as Bagging and averaging). It can be seen from Table I, the
performance of CNN + SVM is not as good as other models.
This is because support vector machine aims to find the hy-
perplane that maximizes distances between the hyperplane and
the support vectors. It suffers when there is no clear margin
of separation between classes. Meanwhile, SVM classifiers do
not perform well on multi-class prediction problems with large
datasets, especially datasets with noisy labels.

In Table I, it is intuitive that CNN-based classifiers such
as CNN + gradCAM outperform the conventional ensemble
learning algorithms and decision-making algorithms. This is
because the design goal of a model is generally to achieve high
accuracy in prediction, or high performance in a certain aspect
on a given task. However, as models become more complex
and sophisticated to emphasize certain aspects of performance,
such as interpretability, this will come at the cost of accuracy.
Here, GradCAM is a post-hoc attention mechanism, that is, it
is a method for generating interpretable heat maps that can be
applied to an already-trained neural network after model param-
eters have been fixed. Therefore, this form of interpretability
does not affect the accuracy of the CNN model. However, in
medical diagnosis, interpretability is an equally important factor
as accuracy. This is because understanding how a model makes
decisions provides an insight into why certain decisions are made
and how they can be improved. However, the post-hoc inter-
pretability obtained by gradCAM cannot provide a decision-
making process, which will greatly reduce the reliability of the
model. It is also untraceable when the generated heatmaps are
not consistent with those of human experts. While for decision-
making models and ensemble based frameworks such as En-
ABPT, additional interpretability constraints are introduced in
the iteration to optimize both interpretability and accuracy. This
will cause the degradation of the model in terms of accuracy and
F-1 score. Meanwhile, in EnABPT, the decision tree of each base
learner traverses the space of possible branches in a top-down
greedy search manner without backtracking. Here, the greedy
algorithm is based on selecting locally optimal interpretability
features at each node for splitting criterion. By making these
local optimal choices, the model can obtain an approximate
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optimal solution globally. Therefore, the performance of En-
ABPT is limited because the model provides interpretability at
a certain expense of accuracy. Furthermore, in boosting frame-
work, each subsequent weak learner is forced to concentrate
on the examples that are misclassified in the previous ones
and attempt to correct them by intensively learning confusing
samples. This means that examples that are difficult to pre-
dict receive ever-increasing influence as iterations proceed. In
other words, the accuracy of EnABPT is also sensitive to the
number of base learners. We can achieve higher accuracy by
increasing the number of base learners. However, the computa-
tional pressure also increases with the number of base learners.
Here, our EnABPT trades off model complexity, training time
and interpretability while considering computational burden.
Thus, CNN + gradCAM outperformed EnABPT in terms of
accuracy, AUC and F-1 score when only five base learners
are included in EnABPT. Whereas our model addresses the
“accuracy-interpretability trade-off” issue at the cost of ∼1%
accuracy.

While for existing SOTA decision making models such as
ProtoPNet and Prototype Tree, they can provide prototypes to
explain the classification results and even generate the reasoning
process. However, their accuracy is only ∼95%, which is rel-
atively lower than our EnABPT. This is because both models
contain only a single base learner that learns the mapping
function from the original data distribution. Their performance
is limited without shifting the data distribution.

It is worth noting that some nucleus-based machine learn-
ing methods such as MTCP model can achieve SOTA perfor-
mance in tissue phenotyping. The F-1 score of MTCP model
ranged from 0.8100 to 0.9700 (depending on weighting coef-
ficient in loss function) in classifying seven out of the eight
tissue phenotypes in CRCH dataset excluding ADI tissue. How-
ever, our EnABPT still outperformed MTCP in classifying 8
types of tissue phenotypes. This is because MTCP model is
based on cell detection and classification, which only considers
the features of the nucleus and their interactions but ignores
the meaningful information in the surrounding. Therefore, the
application of the MTCP model is limited and cannot pre-
dict the tissue phenotypes without nuclei, such as ADI tis-
sue. While our EnABPT can make predictions for all tissue
phenotypes. Additionally, MTCP is a semi-supervised cellular
community detection algorithm for tissue phenotyping, which
integrates cell detection, classification, and cellular interaction
features within a graph-based hierarchical framework. Here, the
cell classification network was trained based on five specific
labeled cell types including Tumor epithelial cells, Normal
epithelial cells, Spindle-shaped cells, Inflammatory cells, and
Necrotic cells. Therefore, the performance of MTCP is highly
sensitive to its hyper parameters and prior information obtained
by the cell classification network. This means that the perfor-
mance of MTCP will vary on different datasets.

For ensemble learning algorithms, the results showed that
the accuracy of bagging and averaging models with 5 identical
neural prototype tree is 0.9687 and 0.9608, which is lower than
the proposed model. This is because bagging and averaging are
parallel ensemble learning frameworks, the data distribution for
each base learner is nearly identical. There is no special base
learner committed to focus on confusing samples, thereby the
predictive ability of the model is not significantly improved by
ensemble strategy. The purpose of bagging and averaging is
to obtain a stable model by reducing the overall variance of

the predictions. Whereas the proposed method could effectively
improve the prediction accuracy and reduce the bias of whole
model through sequentially focusing on poor predictions in
the previous round. Therefore, EnABPT leverages the comple-
mentary properties of base learners and a weighted soft voting
strategy to outperform the other two ensemble-based learning
methods in terms of indicators such as accuracy, AUC and F-1
score.

Table II shows the performance of EnABPT and comparative
models on the CRC-TP dataset. As shown in Table II, the clas-
sification accuracy of the EnABPT can reach 0.8389 for seven
types of pathological images. The accuracy of each base learner
can be obtained as {0.8241, 0.8100, 0.7968, 0.7764, 0.7637},
and the corresponding weights of the base learners are {0.2138,
0.2096, 0.2008, 0.1926, 0.1832}, respectively. In Table II, the
results also demonstrate that the EnABPT model outperforms
other ensemble-based models (bagging and averaging), CNN +
SVM, as well as SOTA decision-making algorithms. Compared
with CNN-based models, although our EnABPT model achieves
slightly lower results on the CRCH dataset, it also addresses the
“accuracy-interpretability trade-off” at the cost of ∼1.5% accu-
racy. Therefore, the results on CRC-TP dataset also demonstrate
the effectiveness of the proposed model.

Notably, the F-1 score of the MTCP model ranged from
0.8200 to 0.9300, which outperforms our EnABPT on CRC-TP
dataset under certain conditions. This is mainly because of the
following two reasons: (1) As mentioned above, the MTCP is
a complex semi-supervised machine learning algorithm based
on a prior information of the cellular features. Whereas the
prior information is obtained from a classification network based
on labeling of five specific types of cell nuclei. Therefore,
it is obviously that the semi-supervised approach can outper-
form EnABPT model in tissue phenotype prediction. (2) the
MTCP is a graph-based hierarchical framework constructed on
patch-level cellular interactions. This algorithm only utilizes
the interaction features of the nucleus without considering the
background. Thus, it is not sensitive to noisy background when
prior information of the nuclei can be properly applied.

However, both semi-supervised learning approach and the
realization of noisy background exclusion requires exhaustive
annotations for the cells in histology images by experienced
pathologists, which is not always available. In contrast, our
EnABPT does not require any cellular-level annotations at all.
Furthermore, it is also challenging in detection and classifi-
cation of morphologically heterogeneous nuclei such as thin
fibroblasts, small nuclei and overlapped nuclei. Therefore, the
nucleus-based MTCP algorithm has limitations in analyzing
the diversity of nuclear morphology and tissue phenotypes.
While our EnABPT is not nucleus-based, which can classify
tissue phenotypes of arbitrary morphology, including tissues
with and without nuclei. The interpretability provided by the
EnABPT is also not limited to nuclear-level features.

B. Interpretability

Fig. 4(a)–(e) visualizes the reasoning process of each base
learner embedded in the EnABPT model, which faithfully ex-
plains the intrinsic classification and inference process of the
whole model. The results in Fig. 4 are obtained from the built-in
prototype tree (Fig. 2) following the CNN architecture in each
base learner. Therefore, the feature map of the image (zm) serves
as the input of the prototype tree, which is extracted by the
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TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED MODEL ON CRC-TP DATASET

TABLE III
INTERPRETABILITY CLASSIFICATION RESULTS OF EACH PROTOTYPE TREE

truncated resnet-50. As is shown in Fig. 4, each subtree contains
a root node, some internal nodes and more leaf nodes, which are
arranged in a hierarchical structure to form a prototype tree.
Both root node and internal nodes contain a prototype ρmn

∗
on the left and the corresponding source image on the right.
This indicates that each prototype is an image patch cropped
from the yellow box in the source image, which can also be
regarded as the node feature or routing criterion of its children
nodes. Here, the latent prototypes of the prototype tree Pm

n are
obtained in a greedy manner under the guidance of the overall
loss function. Then, the obtained latent prototypes are “slides”
over {zm}Ni=1 and projected to the input image space to obtain
class-related distinctive prototypes ρmn

∗ according to the feature
similarity. Therefore, each prototype (marked with yellow box)
can be located in different site of the corresponding source
image. Meanwhile, the source image is also visualized in the
prototype tree to improve the interpretability of the model from
a global perspective. Each leaf node is the highest predicted
probability of the specific class. The prototypes are the most
distinctive parts for the two children nodes, and the input image
label is predicted according to the ‘presence’ or ‘absence’ of the
prototypical part. For instance, the distinctive part of NORM
and TUM is the small patch 12 according to the 1st prototypical
tree, which is the benchmark for discriminating the routing path
of the nodes. However, interpreting the root node and internal
nodes are a bit challenging. Therefore, we mainly interpret the
reasoning process of leaf nodes with local features.

Table III is a statistical analysis of the interpretable classifica-
tion results of these prototype trees. As is shown in Table III, each

decision tree can generate 4 human-interpretable prototypes
at the root of the leaf node, which are highlighted with the
yellow boxes in the 3rd row of Fig. 4(a)–(e). Here, each type
of pathological image is interpreted at least once using the
ensembles adaptive boosting prototype tree framework. Some
of the pathological image categories are interpreted in multiple
base learners. For instance, NORM and TUM are explained in
three base learners. The prototypes in the three base learners
are mainly localized on epithelial cells for NORM and TUM.
If the atypical morphologies appear in cell nuclei and gland, as
well as the increased nucleus to cytoplasm ratio, it should be
interpreted as TUM, otherwise as NORM. While the prototypes
of LYM in the base learner 23, and 5 includes both nucleus
and cytoplasm, which means that the interpretability of LYM is
characterized by a large nucleus and few cytoplasm. As can be
seen from Fig. 4 and Table III, both ADI and MUS are explained
in only one base learner. The prototype of ADI in 5th base learner
is large open white cells with nuclei on the periphery, while the
prototype of MUS in 4th base learner is the spindle shaped cells.
These interpretable features are peer-reviewed by pathologists
from different medical centers, and the pathologists reached a
consensus on the validity of the proposed method. Finally, it can
be concluded that the class-specific prototypes obtained from
each subtree are perceptually relevant, and the subtrees are able
to cluster the similar-looking classes.

Furthermore, the proposed model can also interpret and vi-
sualize individual predictions through a decision routing pro-
cess in subtrees, which is very similar to the human reasoning
process. Fig. 5 showed the decision routings path of the base
learners in EnABPT based on the learned prototypical part for
two randomly selected confusing TUM image patches in the
test set. All of these decision-making process are based on
interpretable inference by sliding learned prototypes over the
test image and calculating the similarities between them in a
hierarchical structure from root to leaf nodes. Here, Euclidean
distance is utilized for measuring the similarity between the
prototypical part and the input image patch in latent space. If the
similarity probability p>0.5, the node is routing to the ‘present’
branch. Otherwise, routing to the ‘absent’ branch. For instance,
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Fig. 4. Visualization of the internal decision making process of the subtrees.

NORM and TUM share some similarities in appearance. Even
professional pathologists can be confused when diagnosing
malignancies in early stage. The interpretive criteria are mainly
depending on cellular atypia and abnormal nucleus to cytoplasm
ratio. Therefore, missed diagnosed cases tend to occur in a single
weak learner, as shown in Fig. 5(a), (f), (g) and (j). While
other base learners attempt to correct misclassified prediction
by shifting the distribution of training data, i.e., improve the
identification performance by intensively learning confusing
samples. Therefore, the performance of the entire model can
be improved based on soft voting ensemble strategy.

As is shown in Fig. 5, it is also illustrated that the confused
samples do not contain salient discriminative features, resulting
in being misdiagnosed by the previous base learner in ensemble
framework. Specifically, in Fig. 5(a)–(e), the TUM is partially
canceration as it was in the early stage of canceration. So the

1st base learner suffers when capturing these subtle discrim-
inative features based on the learned prototypes. Therefore,
it is predicted as NORM in the 1st decision tree since the
representative feature prototype of the TUM does not appear
at the root of the terminal node. Meanwhile, the projected
interpretable prototypes shown in Fig. 5(b) and (d) are adjacent
parts in the image that contain similar content. This indicates
that the feature representation for each category corresponds to
a specific prototype in the latent space, which further improves
the confidence of the proposed model. Fig. 5(f)–(j) are also
a misclassified sample for the single base learner, which are
predicted correctly by ensemble learning. From Fig. 5(f) and (g),
it can be seen that the first two base learners misclassify the input
sample as NORM, since the input image does not show typical
features of TUM (1st base learner), and even certain features
of NORM appeared, such as goblet cells (2nd base learner).
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Fig. 5. Decision routing path based on local interpretability of TUM.

The prototype obtained by the inference process in Fig. 5(i) is
located adjacent to that in Fig. 5(g), but the predicted outcomes
are completely opposite. This is because the two prototypes
have an offset in horizontal direction. The prototype in Fig. 5(i)
only includes goblet cells, a statistical feature of NORM images,
while the prototype in Fig. 5(g) also includes atypical epithelial
cells, which is a typical feature of TUM. Therefore, it does not
mean that the two reasoning processes is contradicting with each
other. In Fig. 5(j), The 5th learner also misclassifies the input
image as NORM for it contains the typical feature of it, as shown
in the projected prototype before the output of the leaf node.
From Fig. 5(f)–(j), we can conclude that the final result could
be rectified and predicted correctly through EnABPT model
despite only two base learners give correct predictions for this
image. This is because the two base learners predict outcome
with highly confidence through a well-learned class probability
distribution and a soft voting ensemble strategy. Therefore, the
results further demonstrate the effectiveness of the Ensembles
Adaptive Boosting Prototype Tree.

V. CONCLUSION

To date, histopathology examination is still the golden stan-
dard of disease diagnosis, especially cancer prediction. The
clinical prediction methods based on manual feature extraction
suffer from long inspection cycle, labor intensity and subjective
interpretation, which prone to miss the optimal chance of treat-
ment. While the existing computer-aided diagnostic methods
either focus on higher predictive performance or emphasize
more interpretability. It is also a challenging task to obtain
models that are both accurate and interpretable in clinical appli-
cations. Therefore, the article proposes an EnABPT framework
to perform fine-grained classification for typical image patches
in human colorectal pathology slides and address the “accuracy-
interpretability trade-off” issue. The results showed that the
EnABPT could effectively improve the prediction accuracy and
reduce the bias of whole model through sequentially focusing
on poor predictions in the previous base learner and striving
to correct them in the following base learners. Our EnABPT
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model does not require manual labeling and is very similar to
human reasoning process, which opens up new perspectives for
high-precise and reliable inferential diagnosis.
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