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Abstract Ageneralized inhomogeneoushigher-order
nonlinear Schrödinger (GIHNLS) equation for the
Heisenberg ferromagnetic spin chain system in (1+1)-
dimensions under zero boundary condition at infinity
is taken into account. The spectral analysis is first per-
formed to generate a related matrix Riemann–Hilbert
problem on the real axis. Then, through solving the
resulting matrix Riemann–Hilbert problem by taking
the jump matrix to be the identity matrix, the general
bright multi-soliton solutions to the GIHNLS equation
are attained. Furthermore, the one-, two-, and three-
soliton solutions are written out and analyzed by fig-
ures.

Keywords Higher-order nonlinear Schrödinger
equation · Riemann–Hilbert problem · Soliton
solutions

1 Introduction

Solitons are stable, nonlinear pulses which show a
fine balance between nonlinearity and dispersion.
They often arise from some real physical phenomena
described by integrable nonlinear partial differential
equations (NLPDEs) modeling shallow water waves,
nonlinear optics, electrical network pulses and many
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other applications in mathematical physics [1–3]. Both
theoretical and experimental investigations [4–6] have
beenmade on solitons. The derivation of abundant soli-
ton solutions [7,8] to NLPDEs has been closely con-
cerned by scholars from mathematics and physics, and
a variety of approaches and their extentions have been
established and applicable to NLPDEs up to present,
such as the Hirota’s bilinear method [9,10], the Dar-
boux transformation [11,12], the Riemann–Hilbert
method [13–15], and the Lie symmetry method [16,
17]. In the past years, a considerable literature has
grown up around the applications of the Riemann–
Hilbert technique to solve integrable NLPDEs with
zero or nonzero boundary condition, some of which
include the coupled NLS equation [18], the Kundu–
Eckhaus equation [19], the six-component fourth-order
AKNS system [20], themulticomponentmKdVsystem
[21], the N -coupled Hirota equation [22], and the fifth-
order NLS equation [23].

In this paper, we focus on a generalized inhomoge-
neous higher-order nonlinear Schrödinger (GIHNLS)
equation for the Heisenberg ferromagnetic spin system
[26] in (1+1)-dimensions

iut + εuxxxx + 8ε |u|2 uxx + 2εu2u∗
xx

+4εuxu
∗
xu + 6εu∗u2x + 6ε |u|4 u

+
(
1

2
− 3ε

)
uxx + (1 − 6ε)u2u∗ − ihux = 0, (1)

where u denotes the complex function of the scaled spa-
tial variable x and temporal variable t , the real number
ε is a perturbation parameter, the real number h stands
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for the inhomogeneities in themedium [24,25], and the
asterisk and subscripts mean the complex conjugation
and partial derivatives, respectively. Equation (1) is an
integrable model. When h = 0, Eq. (1) reduces to the
fourth-order NLS equation, which governs the Davy-
dov solitons in the alpha helical protein with higher-
order effects [27]. In the past, many studies have been
conducted on Eq. (1). The Lax pair [24] was first pre-
sented. The gauge transformationwas used to construct
soliton solutions [26]. The generalized Darboux tech-
nique was applied to generate some higher-order rogue
wave solutions [28]. In a follow-up study, some solu-
tions were computed by Hirota’s bilinear method, and
infinitely many conservation laws were derived based
upon the AKNS system [29].

The rest of the paper is arranged as follows. In
Sect. 2, we formulate a matrix Riemann–Hilbert prob-
lem by carrying out the spectral analysis and obtain
the reconstruction formula of potential. In Sect. 3, we
gain soliton solutions from a specific Riemann–Hilbert
problem on the real axis, in which the jump matrix is
taken as the identity matrix. The final section is a brief
conclusion.

2 Matrix Riemann–Hilbert problem

What we intend to describe in this section is a matrix
Riemann–Hilbert problem.We start by considering the
Lax pair [28] for Eq. (1)

φx = Uφ, (2)

φt = Vφ, (3)

where φ = (φ1, φ2)
T is the spectral function, the sym-

bol T stands for the vector transpose, and λ ∈ C is a
spectral parameter. And

U =
(−iλ u

−u∗ iλ

)
, V =

(
V11 V12

−V21 −V11

)
,

V11 = 2ελuxu
∗ − iεuxu

∗
x + iεuxxu

∗ − 4iελ2uu∗

−2ελuu∗
x + 3iεu2(u∗)2 − 3iεuu∗ + iεuu∗

xx

+1

2
iuu∗ − ihλ − iλ2 + 8iελ4 + 6iελ2,

V12 = 6iεuuxu
∗ + 4ελu2u∗ + hu − 4iελ2ux + 2ελuxx

−3iεux + iεuxxx + 1

2
iux + λu − 8ελ3u − 6ελu,

V21 = hu∗ + λu∗ − 8ελ3u∗ + 4iελ2u∗
x

+4ελu(u∗)2 − 6ελu∗ + 2ελu∗
xx + 3iεu∗

x

−6iεuu∗u∗
x − iεu∗

xxx − 1

2
iu∗

x .

Equivalently, the Lax pair (2) and (3) reads

φx = (−iλ� + Q)φ, (4)

φt = (
(8iελ4 + 6iελ2 − iλ2 − ihλ)� + V1

)
φ, (5)

in which � = diag(1,−1) and

Q =
(

0 u
−u∗ 0

)
, V1 =

(
Ṽ11 Ṽ12

−Ṽ21 −Ṽ11

)
,

Ṽ11 = 2ελuxu
∗ − iεuxu

∗
x + iεuxxu

∗

−4iελ2uu∗ − 2ελuu∗
x + 3iεu2(u∗)2

−3iεuu∗ + iεuu∗
xx + 1

2
iuu∗

Ṽ12 = 6iεuuxu
∗ + 4ελu2u∗ + hu − 4iελ2ux

+2ελuxx − 3iεux + iεuxxx

+1

2
iux + λu − 8ελ3u − 6ελu,

Ṽ21 = hu∗ + λu∗ − 8ελ3u∗

+4iελ2u∗
x + 4ελu(u∗)2 − 6ελu∗

+2ελu∗
xx + 3iεu∗

x − 6iεuu∗u∗
x

−iεu∗
xxx − 1

2
iu∗

x .

In our analysis, we suppose the potential u to be
vanished rapidly at infinity. It is evident to see from
(4) and (5) that φ ∼ e−iλ�x+(8iελ4+6iελ2−iλ2−ihλ)�t .

Thus, we introduce the transformation

φ = ψe−iλ�x+(8iελ4+6iελ2−iλ2−ihλ)�t ,

which enable us to convert the Lax pair (4) and (5) into

ψx = −iλ[�,ψ] + Qψ, (6)

ψt = (8iελ4 + 6iελ2 − iλ2 − ihλ)[�,ψ] + V1ψ,

(7)

where the square brackets denote the usual matrix com-
mutator, namely [�,ψ] = �ψ − ψ�.

Inwhat follows, the spectral problem (6)will be ana-
lyzed, and t will be treated as a constant. We represent
the matrix Jost solutions ψ±(x, λ) as

ψ±(x, λ) = ([ψ±]1, [ψ±]2)(x, λ), (8)

with the boundary conditions

ψ±(x, λ) → I2, x → ±∞. (9)

The above subscripts in ψ refer to which end of the
x-axis the boundary conditions are required for, and
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I2 is the identity matrix of size 2. Using the bound-
ary conditions (9), one obtains Volterra-type integral
equations

ψ−(x, λ)

= I2 +
∫ x

−∞
e−iλ�(x−z)Q(z)ψ−(z, λ)eiλ�(x−z)dz,

(10)

ψ+(x, λ)

= I2 −
∫ +∞

x
e−iλ�(x−z)Q(z)ψ+(z, λ)eiλ�(x−z)dz.

(11)

From (10) and (11), we find that [ψ+]1 and [ψ−]2 are
analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R,
while [ψ−]1 and [ψ+]2 are analytic for λ ∈ C+ and
continuous for λ ∈ C+ ∪R, where C− and C+ are the
lower andupper halfλ-plane.Applying theAbel’s iden-
tity, we reveal that detψ± are independent of x , since
trQ = 0. Evaluating detψ− at x = −∞ and detψ+ at
x = +∞, we have detψ± = 1 for ∀x and λ ∈ R. Due
to matrix solutions of (4), ψ−e−iλ�x and ψ+e−iλ�x

are linearly associated by the scattering matrix S(λ)

ψ−e−iλ�x = ψ+e−iλ�x S(λ),

S(λ) =
(
s11 s12
s21 s22

)
,

λ ∈ R. (12)

We notice that det S(λ) = 1 due to detψ±(x, λ) = 1.
A matrix Riemann–Hilbert problem is associated

with two matrix analytic functions. In view of the ana-
lytic properties of ψ±, the analytic function in C+ is
given by

P1(x, λ) = ([ψ−]1, [ψ+]2)(x, λ)

= ψ−A1 + ψ+A2, (13)

in which

A1 = diag(1, 0), A2 = diag(0, 1). (14)

Because P1 solves (6), we make an asymptotic
expansion for P1 at large-λ

P1 = P(0)
1 + P(1)

1

λ
+ P(2)

1

λ2
+ O

(
1

λ3

)
, λ → ∞,

and substitute the asymptotic expansion into (6). Com-
paring the coefficients of the same powers of λ yields

O(1) : P(0)
1x = −i

[
�, P(1)

1

] + QP(0)
1 ;

O(λ) : −i
[
�, P(0)

1

] = 0.

Thus, we see that P(0)
1 = I2, namely P1 → I2 as

λ ∈ C+ → ∞.

For construction of a matrix Riemann–Hilbert prob-
lem, we still need the analytic counterpart of P2 inC−.
Consider the adjoint equation of (6)

κx = −iλ[�, κ] − κQ. (15)

One can verify that the inverse matrices

ψ−1± (x, λ) =
([ψ−1± ]1

[ψ−1± ]2
)

(x, λ) (16)

solve (15). Here, [ψ−1± ] j ( j = 1, 2) signify the j-
th row of ψ−1± and follow the boundary conditions
ψ−1± (x, λ) → I2 as x → ±∞. From (12), it follows
immediately that

ψ−1− = e−iλ�x S−1(λ)eiλ�xψ−1+ , λ ∈ R, (17)

where S−1(λ) = (rlk)2×2. Thus, the analytic function
P2 in C− is expressed as

P2(x, λ) =
([ψ−1− ]1

[ψ−1+ ]2
)

(x, λ) = A1ψ
−1− + A2ψ

−1+ ,

(18)

where A1 and A2 are given by (14). One can find that
the asymptotic behavior of P2 turns out to be P2 → I2
as λ → ∞.

Inserting ψ±(x, λ) into (12) gives

[ψ−]1 = s11[ψ+]1 + s21e
2iλx [ψ+]2.

Theψ−1± (x, λ) are then substituted into (17) yielding

[ψ−1− ]1 = r11[ψ−1+ ]1 + r12e
−2iλx [ψ−1+ ]2.

Thus, P1 and P2 can be represented as

P1 = ([ψ−]1, [ψ+]2)
= ([ψ+]1, [ψ+]2)

(
s11 0

s21e2iλx 1

)
,

P2 =
([ψ−1− ]1

[ψ−1+ ]2
)

=
(
r11 r12e−2iλx

0 1

) ([ψ−1+ ]1
[ψ−1+ ]2

)
.

Having presented two matrix functions P1 and P2
which are analytic in C+ and C−, respectively, a
matrix Riemann–Hilbert problem on the real axis can
be formed below
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P−(x, λ)P+(x, λ) = G(x, λ)

=
(

1 r12e−2iλx

s21e2iλx 1

)
, λ ∈ R, (19)

inwhichwe have denoted that P1 → P+ asλ ∈ C+ →
R and P2 → P− as λ ∈ C− → R. And the canonical
normalization conditions are given by

P1(x, λ) → I2, λ ∈ C+ → ∞; P2(x, λ) → I2,

λ ∈ C− → ∞.

Next, we are going to present the reconstruction
formula of the potential. Since P1(x, λ) solves (6),
expanding P1(x, λ) at large-λ as

P1 = I2 + P(1)
1

λ
+ P(2)

1

λ2
+ O

(
1

λ3

)
, λ → ∞,

and inserting this expansion into (6), we see that

Q = i
[
�, P(1)

1

]

=
(

0 2i
(
P(1)
1

)
12

−2i
(
P(1)
1

)
21 0

)

	⇒ u = 2i
(
P(1)
1

)
12,

where
(
P(1)
1

)
12 is the (1,2)-entry of P(1)

1 . By now, we
have achieved the reconstruction for the potential.

3 Soliton solutions

For calculation of soliton solutions to Eq. (1), we make
an assumption that det P1(λ) and det P2(λ) can be zeros
at certain discrete locations in analytic domains. Based
on detψ± = 1, (13) and (18), as well as the scatter-
ing relation (12), we reveal that det P1(λ) = s11(λ)

and det P2(λ) = r11(λ). That is to say, det P1(λ) and
det P2(λ) have the same zeros as s11(λ) and r11(λ).
We now need the locations of zeros. Notice that the
potential matrix Q satisfies the anti-Hermitian prop-
erty Q† = −Q, where † means the matrix Hermitian.
Taking advantage of this property in Q, one has

ψ
†
±(x, λ∗) = ψ−1± (x, λ). (20)

After taking theHermitian to (13) and considering (18),
we find that

P†
1 (λ∗) = P2(λ), λ ∈ C−, (21)

and

S†(λ∗) = S−1(λ) 	⇒ s∗
11(λ

∗) = r11(λ).

From this, it is found that each zero λ j of det P1 pro-
duces each zero λ∗

j of det P2. Let N be a free natural
number. Generally, we assume that det P1 and det P2
have some simple zeros atλ j ∈ C+ and λ̂ j = λ∗

j ∈ C−,
respectively. For this case, each of the kernel of P1(λ j )

and P2(λ̂ j ) contains a single basis column vector ν j or
row vector ν̂ j :

P1(λ j )ν j = 0, (22)

ν̂ j P2(λ̂ j ) = 0, (23)

By taking the Hermitian to (22) and utilizing (21), we
get

ν̂ j = ν
†
j , 1 ≤ j ≤ N . (24)

Then, computing x-derivative and t-derivative in (22),
respectively, and using (6) and (7) yields

P1(λ j )

(
∂ν j

∂x
+ iλ j�ν j

)
= 0,

P1(λ j )

(
∂ν j

∂t

−(8iελ4j + 6iελ2j − iλ2j − ihλ j )�ν j

)
= 0.

Therefore, we get

ν j = e

(
−iλ j x+(8iελ4j+6iελ2j−iλ2j−ihλ j )t

)
�
ν j0.

In view of the relation (24), we see that

ν̂ j = ν
†
j0e

(
iλ∗

j x−(8iελ∗
j
4+6iελ∗

j
2−iλ∗

j
2−ihλ∗

j )t
)
�
,

where ν j0 and ν
†
j0 are constants.

For presenting soliton solutions, we consider the
reflectionless case, namely G(x, λ) = I2. This result-
ing special Riemann–Hilbert problem [30] possesses
the solutions

P1(λ) = I2 −
N∑

k=1

N∑
j=1

νk ν̂ j
(
M−1

)
k j

λ − λ̂ j
,

P2(λ) = I2 +
N∑

k=1

N∑
j=1

νk ν̂ j
(
M−1

)
k j

λ − λk
, (25)

where M = (mkj )N×N and

mkj = ν̂kν j

λ j − λ̂k
, 1 ≤ k, j ≤ N .

From Eq. (25), we derive

P(1)
1 = −

N∑
k=1

N∑
j=1

νk ν̂ j
(
M−1)

k j .
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Combining the established resultswith ν j0 = (a j , b j )
T

and ϑ j = −iλ j x+ (8iελ4j +6iελ2j − iλ2j − ihλ j )t , the
general N -soliton solution to Eq. (1) can be written as

u(x, t) = −2i
N∑

k=1

N∑
j=1

akb
∗
j e

ϑk−ϑ∗
j
(
M−1)

k j ,

mkj = 1

λ j − λ∗
k

(
a∗
k a j e

ϑ∗
k +ϑ j + b∗

k b j e
−ϑ∗

k −ϑ j
)
.

In what follows, we intend to discuss one-, two-, and
three-soliton solutions graphically.
(i) For N = 1, Eq. (1) possesses one-soliton solution

u(x, t) = 4a1b∗
1λ12e

ϑ1−ϑ∗
1

|a1|2eϑ∗
1+ϑ1 + |b1|2e−ϑ∗

1−ϑ1
, (26)

where we have assumed ϑ1 = −iλ1x + (8iελ41 +
6iελ21 − iλ21 − ihλ1)t and λ1 = λ11 + iλ12. Further,
upon assuming b1 = 1 and |a1|2 = e2ξ1 , then the solu-
tion (26) can be written as

u(x, t)=2a1λ12e
−ξ1eϑ1−ϑ∗

1 sech(ϑ∗
1 +ϑ1+ξ1), (27)

where ϑ∗
1 +ϑ1 = 2λ12x + (64ελ11λ312 − 64ελ311λ12 −

24ελ11λ12 + 2hλ12 + 4λ11λ12)t and ϑ1 − ϑ∗
1 =

−2iλ11x−2i(−8ελ411+(48ελ212−6ε+1)λ211+hλ11+
(−8λ412+6λ212)ε−λ212)t.Equivalently, the solution (27)
reads

u(x, t) = 2a1λ12e
−ξ1eϑ1−ϑ∗

1 sech
[
2λ12x + (

64ελ11λ
3
12

−64ελ311λ12 − 24ελ11λ12
+2hλ12 + 4λ11λ12

)
t + ξ1

]
. (28)

According to expression (28), we know that the
amplitude function |u(x, t)| has a sech profile. This
soliton with peak amplitude 2|a1|λ12e−ξ1 travels at
velocity −32ελ11λ212 + 32ελ311 + 12ελ11 − h − 2λ11
depending on both real and imaginary parts of the spec-
tral parameter λ1, unlike the basic NLS equation. The

phase relies on the spatial variable x and temporal
variable t linearly. The soliton in Fig. 1 is formed for
a1 = 1, λ1 = 1

6 + i
2 , ξ1 = 0, ε = 1, h = 1. From

Fig. 1b, it is seen that the wave travels from right to left
along the x-axis over time.
(ii) For N = 2, two-soliton solution is given by

u(x, t) = −2i
(
a1b∗

1m22eϑ1−ϑ∗
1 − a1b∗

2m12eϑ1−ϑ∗
2 − a2b∗

1m21eϑ2−ϑ∗
1 + a2b∗

2m11eϑ2−ϑ∗
2
)

m11m22 − m12m21
, (29)

where

m11 = 1

λ1 − λ∗
1

(|a1|2eϑ∗
1+ϑ1 + |b1|2e−ϑ∗

1−ϑ1
)
,

m12 = 1

λ2 − λ∗
1

(
a∗
1a2e

ϑ∗
1+ϑ2 + b∗

1b2e
−ϑ∗

1−ϑ2
)
,

m21 = 1

λ1 − λ∗
2

(
a∗
2a1e

ϑ∗
2+ϑ1 + b∗

2b1e
−ϑ∗

2−ϑ1
)
,

m22 = 1

λ2 − λ∗
2

(|a2|2eϑ∗
2+ϑ2 + |b2|2e−ϑ∗

2−ϑ2
)
,

and ϑι = −iλιx+(8iελ4ι +6iελ2ι − iλ2ι − ihλι)t, λι =
λι1 + iλι2, ι = 1, 2. Through assuming a1 = a2, b1 =
b2 = 1, and |a1|2 = e2ξ1 , the solution (29) reads

u(x, t) = −2i
(
a1m22eϑ1−ϑ∗

1 − a1m12eϑ1−ϑ∗
2 − a2m21eϑ2−ϑ∗

1 + a2m11eϑ2−ϑ∗
2
)

m11m22 − m12m21
, (30)

in which

m11 = − ieξ1

λ12
cosh(ϑ∗

1 + ϑ1 + ξ1),

m12 = 2eξ1

(λ21 − λ11) + i(λ12 + λ22)
cosh(ϑ∗

1 + ϑ2 + ξ1),

m22 = − ieξ1

λ22
cosh(ϑ∗

2 + ϑ2 + ξ1),

m21 = 2eξ1

(λ11 − λ21) + i(λ12 + λ22)
cosh(ϑ∗

2 + ϑ1 + ξ1).

In order to show interaction behaviors between two
solitons, some graphs are plotted and two cases are
under consideration here.

We first consider the case of two solitons traveling
at different velocities. In this case, the solution param-
eters in (30) are first chosen as a1 = 1, a2 = 1, λ1 =
1
10 + i

3 , λ2 = 1
10 + i

2 , ξ1 = 0, ε = 1, h = 1. According

123



3610 Z.-Z. Kang , R.-C. Yang

Fig. 1 Profiles of
one-soliton solution (28)
with a1 = 1, λ1 = 1

6
+ i

2 , ξ1 = 0, ε = 1, h = 1.
a 3D plot; b x-curves

(a) (b)

to these values, some plots aremade to shed light on the
localization and dynamical behaviors. Figure2a shows
the localized structure of this solution on (x, t)-plane
clearly, which is a typical cross two bright solitons. It
can be observed that the overtaking collision between
the solitons takes place as depicted in Fig. 2b, where
two solitons with different velocities move together
toward the same direction along the x-axis. The (taller)
soliton with a larger amplitude travels much faster than
the other (shorter) solitonwith a smaller amplitude, and
the taller soliton catches upwith the shorter soliton over
time.Both solitons then continue to proceed in the same
direction. At the moment t = 0, the amplitude value
for two solitons reaches themaximum.Before and after
the collision, their speeds and shapes are unchanged.
In other words, the overtaking is an elastic interaction.

In Fig. 3,we show the head-on collision between two
solitons with the parameters as a1 = 1, a2 = 1, λ1 =
1
10 + i

2 , λ2 = 1
6 + i

3 , ξ1 = 0, ε = 1, h = 1. The
taller soliton crashes the shorter one in the opposite
direction of the x-axis. After the collision, their ampli-
tudes, widths, speeds, and directions are same as those
before only except phase shifts, see Fig. 3b. Evidently,
the head-on interaction of two solitons is also elastic.

With regard to the second case, we consider that two
solitons travel at same speeds. The solution parame-
ters in (30) are specified as a1 = 1, a2 = 1, λ1 =
i
3 , λ2 = i

2 , ξ1 = 0, ε = 1, h = 1. The bound state
of two solitons is shown on (x, t)-plane in Fig. 4, in
which two solitons are localized spatially and keep
together in propagation. Indeed, this solution indicates

the breather, namely when two solitons propagate, the
amplitude function is periodic in oscillation over time.

(iii) For N = 3, Eq. (1) admits three-soliton solution

u(x, t) = − 2i



[
a1b

∗
1(m22m33 − m23m32)e

ϑ1−ϑ∗
1

− a1b
∗
2(m12m33 − m13m32)e

ϑ1−ϑ∗
2

+ a1b
∗
3(m12m23 − m13m22)e

ϑ1−ϑ∗
3

− a2b
∗
1(m21m33 − m23m31)e

ϑ2−ϑ∗
1

+ a2b
∗
2(m11m33 − m13m31)e

ϑ2−ϑ∗
2

− a2b
∗
3(m11m23 − m13m21)e

ϑ2−ϑ∗
3

+ a3b
∗
1(m21m32 − m22m31)e

ϑ3−ϑ∗
1

− a3b
∗
2(m11m32 − m12m31)e

ϑ3−ϑ∗
2

+ a3b
∗
3(m11m22 − m12m21)e

ϑ3−ϑ∗
3
]
,

(31)

where  = m11m22m33−m11m23m32−m12m21m33+
m12m23m31 + m13m21m32 − m13m22m31,

m11 = 1

λ1 − λ∗
1

(|a1|2eϑ∗
1+ϑ1 + |b1|2e−ϑ∗

1−ϑ1
)
,

m12 = 1

λ2 − λ∗
1

(
a∗
1a2e

ϑ∗
1+ϑ2 + b∗

1b2e
−ϑ∗

1−ϑ2
)
,

m13 = 1

λ3 − λ∗
1

(
a∗
1a3e

ϑ∗
1+ϑ3 + b∗

1b3e
−ϑ∗

1−ϑ3
)
,

m21 = 1

λ1 − λ∗
2

(
a∗
2a1e

ϑ∗
2+ϑ1 + b∗

2b1e
−ϑ∗

2−ϑ1
)
,

m22 = 1

λ2 − λ∗
2

(|a2|2eϑ∗
2+ϑ2 + |b2|2e−ϑ∗

2−ϑ2
)
,

m23 = 1

λ3 − λ∗
2

(
a∗
2a3e

ϑ∗
2+ϑ3 + b∗

2b3e
−ϑ∗

2−ϑ3
)
,
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Fig. 2 Profiles of
two-soliton solution (30)
with a1 = 1, a2 = 1, λ1 =
1
10 + i

3 , λ2 = 1
10 + i

2 , ξ1 =
0, ε = 1, h = 1. a 3D plot;
b x-curves

(a) (b)

Fig. 3 Profiles of
two-soliton solution (30)
with a1 = 1, a2 = 1, λ1 =
1
10 + i

2 , λ2 = 1
6 + i

3 , ξ1 =
0, ε = 1, h = 1. a 3D plot;
b x-curves

(a) (b)

Fig. 4 Profiles of
two-soliton solution (30)
with a1 = 1, a2 = 1, λ1 =
i
3 , λ2 = i

2 , ξ1 = 0, ε =
1, h = 1. a 3D plot; b
x-curves

(a) (b)

123



3612 Z.-Z. Kang , R.-C. Yang

(a) (b) (c)

Fig. 5 Profiles of three-soliton solution (31) with a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, λ1 = 1
10 + i

2 , λ2 = 1
10 + 2i

3 , λ3 =
1
10 + i

3 , ε = 1, h = 1. a x-curve at t = −18; b x-curve at t = 0; c x-curve at t = 18

(a) (b) (c)

Fig. 6 Profiles of three-soliton solution (31) with a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, λ1 = 1
10 + i

2 , λ2 = 1
6 + i

3 , λ3 =
1
8 + i, ε = 1, h = 1. a x-curve at t = −8; b x-curve at t = 0; c x-curve at t = 8

m31 = 1

λ1 − λ∗
3

(
a∗
3a1e

ϑ∗
3+ϑ1 + b∗

3b1e
−ϑ∗

3−ϑ1
)
,

m32 = 1

λ2 − λ∗
3

(
a∗
3a2e

ϑ∗
3+ϑ2 + b∗

3b2e
−ϑ∗

3−ϑ2
)
,

m33 = 1

λ3 − λ∗
3

(|a3|2eϑ∗
3+ϑ3 + |b3|2e−ϑ∗

3−ϑ3
)
,

and ϑι = −iλιx+(8iελ4ι +6iελ2ι − iλ2ι − ihλι)t, λι =
λι1 + iλι2, ι = 1, 2, 3.

Following the similar lines as our discussion on two
solitons, we now examine the dynamics among three
solitons. The parameter values in (31) are first given by
a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, λ1 =
1
10 + i

2 , λ2 = 1
10 + 2i

3 , λ3 = 1
10 + i

3 , ε = 1, h = 1.

Based on these values, a special solution can be gained
at once. And we can know the velocity relation for the
three solitons S1 < S2 < S3. Here, we have denoted
that the solitons from left to right in Fig. 5a are S1, S2,
and S3. Figure 5 presents an elastic overtaking process
among three solitons moving together toward the nega-
tive direction of the x-axis. Ultimately as time evolves,
S2 overtakes S1, and S3 overtakes S1 and S2. When
t = 0, the peak amplitude is maximum.

Then, we take the parameters as a1 = 1, a2 =
1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, λ1 = 1

10 + i
2 , λ2 =

1
6 + i

3 , λ3 = 1
8 + i, ε = 1, h = 1. Denoting that the

solitons from left to right in Fig. 6a are s1, s2, and s3,
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Profiles of three-soliton solution (31) with a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, λ1 = i
2 , λ2 = 1

6 + i
5 , λ3 = i

3 , ε =
1, h = 1. a 3D plot; b x-curve at t = −15; c x-curve at t = − 15

4 ; d x-curve at t = 0; e x-curve at t = 15
4 ; f x-curve at t = 15

respectively, it is found in Fig. 6 that s1 moves toward
the positive direction of the x-axis, which is oppo-
site to the propagation direction of s2 and s3. As time
goes on, s1 collides head-on with s2 and s3, while s3
overtakes s2. After the interactions, the three solitons
s1, s2, and s3 continue to move along their original
directions. Both head-on and overtaking interactions
in the process are elastic. Additionally, the head-on
interaction of two solitons in bound state with another
soliton during propagation can be observed in Fig. 7.
And Fig. 8 shows the evolution of bound state of three
solitons.

4 Conclusion

In this study, a generalized inhomogeneous higher-
order nonlinear Schrödinger equation for the Heisen-
berg ferromagnetic spin chain system in (1+1)
-dimensions with the zero boundary condition was
taken into account. AmatrixRiemann–Hilbert problem
was built, based on which multi-bright-soliton solu-
tions to the examined equation were explored eventu-
ally. Moreover, the explicit forms of one-, two-, and
three-bright-soliton solutions were given, and a few
vivid plots were made to exhibit their spatial struc-
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Profiles of three-soliton solution (31) with a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 1, b3 = 1, λ1 = i
2 , λ2 = i

3 , λ3 = 3i
4 , ε =

1, h = 1. a 3D plot; b x-curve at t = −15; c x-curve at t = − 5
4 ; d x-curve at t = 0; e x-curve at t = 5

4 ; f x-curve at t = 15

tures in three-dimensions and dynamical behaviors in
two-dimensions after specifying the parameter values
properly with the aid of Maple software.
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