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a b s t r a c t 

Background and Objective: Whole slide image (WSI) classification and lesion localization within giga-pixel 

slide are challenging tasks in computational pathology that requires context-aware representations of his- 

tological features to adequately infer nidus. The existing weakly supervised learning methods mainly treat 

different locations in the slide as independent regions and cannot learn potential nonlinear interactions 

between instances based on i.i.d assumption, resulting in the model unable to effectively utilize context- 

ware information to predict the labels of WSIs and locate the region of interest (ROI). 

Methods: Here, we propose an interpretable classification model named bidirectional Attention-based 

Multiple Instance Learning Graph Convolutional Network (ABMIL-GCN), which hierarchically aggregates 

context-aware features of instances into a global representation in a topology fashion to predict the slide 

labels and localize the region of lymph node metastasis in WSIs. 

Results: We verified the superiority of this method on the Camelyon16 dataset, and the results show 

that the average predicted ACC and AUC of the proposed model after flooding optimization can reach 

90.89% and 0.9149, respectively. The average accuracy and ACC score are improved by more than 7% and 

4% compared with the existing state-of-the-art algorithms. 

Conclusions: The results demonstrate that context-aware GCN outperforms existing weakly supervised 

learning methods by introducing spatial correlations between the neighbor image patches, which also 

addresses the ‘accuracy-interpretability trade-off’ problem. The framework provides a novel paradigm for 

the clinical application of computer-aided diagnosis and intelligent systems. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Histopathological whole-slide image (WSI) classification and 

esion localization within giga-pixel slide are challenging tasks 

n computational pathology that requires context-aware repre- 

entations of histological features to adequately infer nidus. To 

ate, manual inspection of histopathological slides remains the 

old standard for severe disease diagnosis, especially for assess- 

ng malignancy progression, lesion staging, and further treatment 

f cancer-related regions [1] . However, it suffers from long inspec- 

ion cycle and serious reliance on subjective interpretation, which 

annot satisfy the demand of precision medicine. Therefore, it is an 
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rgent need to develop artificial intelligent systems for automatic 

nalysis of whole slide images (WSI). 

In the field of computational pathology, deep learning has pre- 

ented a great potential for real-time, objective, and reproducible 

linical-grade predictions of giga-pixel WSIs [2–6] . However, deep 

earning based approaches require either manual annotation of 

iga-pixel WSIs using supervised leaning or only slide-level labels 

sing weakly supervised learning. Supervised learning algorithms 

se ground truth correspondences to construct a deep model, 

hich have achieved state-of-the-art (SOTA) performance across 

arge number of computer vision tasks including image segmenta- 

ion and lesion boundaries localization [7–10] . However, supervised 

earning algorithms should provide pixel-wise labeling of whole 

lide image. It is labor-intensive and time-consuming, which lim- 

ts its application in realistic clinical scenarios. 

https://doi.org/10.1016/j.cmpb.2022.107268
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107268&domain=pdf
mailto:meiyanliang@sxu.edu.cn
https://doi.org/10.1016/j.cmpb.2022.107268
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To address this issue, existing supervised learning methods 

ainly adopt multiple instance learning (MIL), which eliminate 

he laborious and time-consuming labeling process by assigning 

ne label to the whole bag [11–14] . However, the MIL baseline 

odel could only obtain the spatial positions of top-ranked in- 

tances [15–17] , which is prone to miss most of the positive in- 

tances in the WSI. This is because these frameworks are designed 

nder the instance independent and identical distribution (i.i.d.) 

ypothesis, which ignores the correlations between instances in a 

ag. To better utilize the context-aware information of the WSI, re- 

earchers consider introducing instance-level constraints [18–21] , 

ulti-scale features, feature representations and Transformer ar- 

hitectures into MIL-based models to capture local and global cor- 

elations between the instances of WSI, thereby improving the 

verall performance of the model. 

Specifically, many researchers attempt to introduce instance- 

evel constraints in MIL to improve the performance of the weakly 

upervised model. Nevertheless, in the iteration process, only top- 

 instances of WSIs are selected for feature aggregation before 

he output layer [22–24] . Therefore, it requires massive amounts 

f WSIs to build the model since only a fraction of the instances 

ithin each slide could actually participate in the training pro- 

ess. Moreover, multi-scale feature assisted MIL learning is pro- 

osed as an intuitive method to simulate the workflow of pathol- 

gists interpreting WSIs, which obtains context-aware features of 

he slide by extracting the patch features at multiple scales (mag- 

ifications) [25–27] . Likewise, multi-scale feature based methods 

lso cause computational burden due to the large volume of data 

nd are not always applicable in certain cases. Even some stud- 

es get conflicting conclusions when multi-scale features are in- 

roduced. For instance, Chen et al. [13] have demonstrated that 

ultiple instance learning with multi-scale features does not al- 

ays outperform single-scale approaches. The effective combina- 

ion of multiple features is also a worth considering issue when 

ulti-scale feature is applied in MIL learning [28–30] . Feature rep- 

esentation embedding is another perspective for WSI predictions, 

hich is prone to maintain the original spatial locations of patches 

nd avoid information redundancy [31–33] . In these studies, image 

atches of the WSI can be highly compressed and represented as 

eature vectors by contrastive learning or GAN-based methods. Af- 

erwards, the feature vectors are spatially arranged to form a data 

ube according to the location of the source patches in the slide, 

hich is then fed into the CNN-based network as a whole for in- 

erpretable classification using the attention mechanism. However, 

his approach cannot be utilized in realistic clinical scenarios be- 

ause the large compression ratio or sparse feature representation 

f gigapixel WSI will lead to limited generalization ability for the 

odel at test time or failure to provide useful slide-level inter- 

retability. 

Currently, the MIL-based approaches have achieved exciting im- 

rovements in WSI prediction and regions of interest (ROI) local- 

zation. However, almost all MIL-related methods are based on the 

.i.d. assumption and are not fully applicable for the real WSI clas- 

ification task. This is due to the fact that these methods cannot 

ully simulate the context-aware structure of image patches with 

pecific spatial location in WSI by capturing the intrinsic relation- 

hip between different magnifications. 

In the realistic scenarios, pathologists should consider both the 

eature representation of the region and the nonlinear interactions 

etween the regions when making final diagnostic predictive de- 

erminations. Therefore, it would be much desirable to introduce 

he dependencies between the instances in the bag for multiple 

nstance learning algorithm. Recently, some researchers attempt 

o use Transformer architecture to build the relationship between 

mage patches to overcome the problem of irrelevance between 
2 
nstances caused by the i.i.d. assumption in MIL-based methods 

34–36] . However, these methods are mainly based on the self- 

ttention mechanism to establish the dependencies between image 

atches, which could cause a large burden for the computational 

evice in WSI prediction [37–39] . To tackle this issue, a subset of 

mage patches is sampled randomly from the WSI to form a sparse 

epresentation of the slide, and then fed into the Transformer ar- 

hitecture to simulate the image patches located in WSI. However, 

t will fall into the same dilemma as the instance-level constrained 

pproach does [40] . 

Inspired by pathologists interpreting pathological slides us- 

ng microscopes at different magnifications, we propose a 

ontext-aware graph convolution framework named bidirectional 

ttention-based Multiple Instance Learning Graph Convolutional 

etwork (ABMIL-GCN), which not only considers the feature rep- 

esentation of each patch in the slide, but also provides potential 

on-linear interactions between the neighbor patches. This frame- 

ork builds context-aware information of slides via patch feature 

mbedding to form a WSI-graph representation for final diagnosis 

nd prediction. It breaks the limitations of conventional i.i.d as- 

umption about instances in a bag, which could greatly improve 

he performance of attention-based MIL pooling aggregation by 

idirectional message passaging mechanism between the neighbor 

atches. By embedding context-aware information for each patch, 

t not only improves the overall prediction accuracy of WSI images, 

ut also avoids information redundancy when applying multi-scale 

eature-based MIL learning. Furthermore, the non-linear interac- 

ions of the neighbor instances and spatial feature embedding con- 

traints can effectively reduce false negative and false positive in- 

tances in slides, which provides a basis for locating ROIs with high 

ccuracy. 

The main scientific contributions are summarized as follows: 

• Bidirectional ABMIL-GCN framework is proposed to simulate 

local- and global- topology structure of the pathology patches 

in whole slide images, which fully preserves the original spatial 

relations for the slides so that the model can capture structural 

correlation between the neighbor patches. 
• Under the i.i.d. assumption, misclassification of individual patch 

may alter the prediction of slide labels, resulting in a large 

number of false negatives and false positives. Here, bidirectional 

ABMIL-GCN framework embeds the spatial location of neigh- 

boring instances for each patch, which can reduce the false 

negative and false positive rate of instances through inter-patch 

message passing mechanism. 
• Flooding regularization is applied in bidirectional ABMIL-GCN 

framework to prevent further optimization of the training loss 

when it reaches a reasonably small value (called flood level). 

Therefore, the approach forces the training loss float around the 

flood level by setting a lower bound on it. 
• The interpretability heat map of WSI can also be obtained by 

bidirectional ABMIL-GCN, which utilize the gradient of highly 

correlated node groups in the graph to obtain more accu- 

rate attention weights of the instances. Therefore, ROI in H&E- 

stained slides has good consistency with the pixel-wise anno- 

tated ground truth. 

. Methods 

.1. Slide-level graph construction 

Given a training WSI dataset D = { X i , Y i } N i =1 
, where X i and Y i are

he i th input WSI and its corresponding class label, Y i ∈ {0, 1} for

inary classification, N is the number of WSI in the training pro- 

ess. To construct a graph G for each image in the training dataset, 
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Fig. 1. The overview of the data reprocessing, ABMIL-GCN framework and interpretability. (a) The preprocessing of a whole slide image contains tissue foreground segmenta- 

tion (left) and patching (right). (b) Image patches are encoded into a descriptive feature representations (left) by a truncated Resnet50, which can be viewed as nodes. These 

nodes are embedded in the graph to form a context-aware slide-level graph representation based on its spatial coordinates (right). Here, the slide-level graph representation 

can be expressed as G i = ( H i ,A i ). (c) During the training and inference stages, the constructed graph passed through a graph convolutional layer to obtain the context-aware 

topology information of the WSI. An attention-based MIL pooling network is applied to aggregate patch-level information into slide-level representations, which are used for 

final diagnostic prediction. Specifically, the attention-based MIL pooling network ranks each region in the slide and assigns an attention score based on its relative importance 

to the slide-level label. Meanwhile, the attention scores can be visualized as a heat map to identify ROIs and interpret the morphology feature used for diagnosis. 
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he H&E-stained WSI is first down-sampled and converted into the 

SV color space. Then, automatic foreground segmentation is per- 

ormed for the WSI using Otsu’s binarization on the saturation 

hannel to separate H&E-stained tissue from the background. Thus, 

he foreground of the X i can be obtained by magnification conver- 

ion and image registration. Afterwards, the foreground of WSI is 

egmented into non-overlapping image patches of size 256 × 256. 

eanwhile the coordinates of the segmented patches are also pre- 

erved in this process. Fig. 1 (a) shows the entire preprocessing pro- 

ess of the input WSI. 

In weakly supervised learning, given a input whole slide im- 

ge X and a corresponding label Y . Each slide X contains multiple 
i i i 

3 
nstances, which can be represent as X i = { x i, j } P j=1 
. Where x i,j de-

ote the j th patch (instance) of the slide X i . Here, each instance

 i,j of slide X i implies a binary label y i,j , which is not given ex-

ctly. P is the number of instances in the X i , which varies widely 

or each WSI. According to multi-instance learning assumption, the 

elationship between instance label y i,j and slide label Y i is as 

ollows: 

 i = 

⎧ ⎨ 

⎩ 

0 , i f 
P ∑ 

j=1 

y i, j = 0 , 

1 , otherwise. 

(1) 
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The instance x i,j can be feature extracted by a truncated 

esNet50 and denoted as h i, j ∈ R 

1 ×1024 in the latent space. There- 

ore, the corresponding feature representation of the WSI can be 

xpressed as H i = { h i, j } P j=1 
mathematically. Here, H i ∈ R 

P×1024 . 

To utilize the contextual-aware information of the WSI in the 

mbedding space, bidirectional ABMIL-GCN framework is proposed 

o improve the prediction performance of WSI. The idea of this 

ethod is to construct a graphical representation for a WSI. Fol- 

ow this route, the contextual-aware information can be efficiently 

tilized to make predictions through the bidirectional informa- 

ion transfer mechanism between neighbor patches in the graph. 

pecifically, the foreground of the WSI is segmented into non- 

verlapping image patches called nodes, and h i,j is regarded as 

he feature representation for the node x i,j . Each node is con- 

ected with the neighbor nodes called edges. The current image 

atch is associated with the surrounding image patches through 

he edges according to the preserved coordinates. Here, we mod- 

ls an 3 × 3 image receptive field of the WSI image by building 

n 8 nearest neighbor graph neural network for each patch. The 

lide-level graph representation can be expressed as G i = ( H i ,A i ), 

hich is shown in Fig. 1 (b). where A i is the adjacency matrix of

raph representation G i for the input slide X i . where A i is expressed 

s: 

 

j, j ′ 
i 

= 

{
1 , i f x i, j is adjacent to x i, j ′ , 

0 , otherwise. 
(2) 

here j, j ′ ∈ {1, 2, ..., P }. 

.2. The framework of ABMIL-GCN 

As shown in Fig. 1 (c), the ABMIL-GCN network mainly con- 

ists of a graph convolutional layer, layer normalization ( LN ) op- 

ration, a gated attention-based MIL pooling layer and a fully con- 

ected layer. Here, the graph convolutional layer [41] is the core of 

he framework because it treats different locations in the slide as 

ontext-aware regions and learns potential nonlinear interactions 

etween instances. Graph convolutional layer encodes the graph 

tructure to obtain the slide-level morphological feature represen- 

ation of WSI. This means that we learn a GCN mapping function 

or a WSI-Graph G i : H i ∈ R 

P×d in → H 

out 
i 

∈ R 

P×d out , which iteratively

ggregates node features in spatial neighborhoods and predicts the 

SI through bidirectional information transfer between the nodes. 

n the framework, layer normalization [42] is also added at the 

utput of a graph convolutional layer for each given WSI to accel- 

rate model convergence, prevent gradient vanishing and improve 

eneralization ability. In our case, the context-aware WSI feature 

epresentation H 

out 
i 

after GCN layer can be expressed as follows: 

 

out 
i = 

{
h 

out 
i, j 

}P 

j=1 
= RELU(LN( ̃  D 

−1 

/ 2 

i 
˜ A i ̃

 D 

1 

/ 2 

i 
LN(H i ) W i )) (3) 

Where H 

out 
i 

∈ R 

P×512 represent the output graph representation 

f H i , h 
out 
i, j 

∈ R 

1 ×512 is the j th element of H 

out 
i 

. Here, ˜ A i = A i + I( ̃  A i ∈
 

P×P ) denote the new adjacency matrix of the bidirectional GCN 

y adding an identity matrix I . ˜ D 

j, j 
i 

= 

∑ 

j ′ ˜ A 

j, j ′ 
i 

( ̃  D i ∈ R 

P×P ) is the de-

ree matrix of the adjacency matrix ˜ A i . W i ∈ R 

1024 ×512 denote the 

onnection weights learned by the graph convolutional layer. 

For whole slide image prediction and lesion localization with- 

ut pixel-wise annotation, ABMIL-GCN uses a gated attention- 

ased MIL pooling [43] to aggregate patch-level features into slide- 

evel representations, as it provides the model with the flexibility 

f selectively aggregating information from multiple relevant node 

amilies to predict the slide-level labels. 
4 
Therefore, the slide-level feature representation for graph G i can 

e given by: 

 i = 

P ∑ 

j=1 

a i, j h 

out 
i, j (z i ∈ R 

1 ×512 ) (4) 

here 

 i, j = 

exp 

{ 

w 

T (tanh (V h 

out 
i, j 

T 
) � sigm (Uh 

out 
i, j 

T 
)) 

} 

P ∑ 

j=1 

exp 

{ 

w 

T (tanh (V h 

out 
i, j 

T 
) � sigm (Uh 

out 
i, j 

T 
)) 

} 

(5) 

a i, j ∈ R denotes the attention score of the node feature h out 
i, j 

n WSI, and it can provide interpretable feature for WSI predic- 

ions via heat map. w ∈ R 

256 ×1 , U ∈ R 

256 ×512 and V ∈ R 

256 ×512 are

earned parameter matrices. � and sigm ( · ) represent element- 

ise multiplication operation and sigmoid function, respectively. 

he superscript T denotes the transpose operation. In the frame- 

ork, gated attention-based MIL pooling introduces nonlinearities 

or the weakly supervised learning, which may potentially elimi- 

ate troublesome linearity generated by tanh ( · ). 

After gated attention-based MIL pooling operation, the obtained 

lide-level feature representation z i passes through a fully con- 

ected layer to make a prediction 

ˆ Y i for the slide X i . In the experi- 

ent, cross entropy loss is applied in implementation to minimize 

he K-L divergence between predicted label { ̂  Y i } N i =1 
and ground truth 

 Y i } N i =1 
. 

. Experiments 

.1. Dataset and implement details 

The experimental dataset is Camelyon16, which includes a 

otal of 399 WSIs of sentinel lymph node from two indepen- 

ent data sets collected in Radboud University Medical Center 

Nijmegen, The Netherlands), and the University Medical Center 

trecht (Utrecht, The Netherlands) . The dataset contains pixel- 

ise annotations for lymph node metastases in hematoxylin and 

osin stained (H&E) whole slide images (WSIs), which is one of 

he largest annotated, public digital pathology datasets available. 

he total number of official training WSIs is 270, including 159 

ormal tissue slides and 111 lymph node metastases slides. The 

70 slides can be split into training set and validation set accord- 

ng the ratio of 8.5:1.5. Afterwards, the performance of the model 

as tested using 129 slides, including 80 normal tissue slides and 

9 lymph node metastasis slides. In the implementation, each WSI 

as cropped into approximately 44, 274 256 × 256 image patches 

t 40 × magnification, with some WSI having graph size as large 

s 142, 949 instances. Adam optimizer is applied in the implemen- 

ation with the initialized learning rate of 1 × 10 −4 and a weight 

ecay of 1 × 10 −6 . The cross-entropy loss is used in the iteration 

o minimize the divergence between the distribution of predicted 

lass probability and the ground truth. Meanwhile, early stopping 

s also applied to avoid overfitting of the weakly supervised model. 

ur model was trained on a INVIDA RTX 3090 (24GB) for 100 

pochs with a batch size of 1. 

In the implementation, performance of early stopping highly 

epends on the iterative dynamics and is extremely sensitive to 

he randomness in the optimization process. This means that early 

topping at the optimal epoch in a single training path does not 

ecessarily perform well in another round of training. In [44] , 

iryo et al. observed that overfitting can be occurred in weakly su- 

ervised learning when the empirical risk goes below zero. There- 

ore, a gradient ascent technique is proposed to maintain the em- 

irical risk non-negative to prevent overfitting, which can be gen- 

ralized and applied to weakly supervised settings. In our case, 
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Fig. 2. The solid lines represent the variation curve of training accuracy (ACC) and 

AUC with the flood level b, respectively. The marker placed on the flood level curve 

is the optimal value of b . The horizontal dashed lines denote the ACC and AUC score 

without the flood level. 
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ooding [45] is introduced to bidirectional ABMIL-GCN to stabilize 

erformance of the model and further prevent overfitting. The idea 

f flooding is to add the flood level as a regularization term to the 

oss function, which can effectively prevent overfitting by setting a 

ower bound on the training loss and forcing the loss to maintain 

reater than or equal to flood level during training. This technique 

an also improve the accuracy of the test set and reduce the MSE 

f the classification risk in a certain condition. The effectiveness of 

he flooding is proved as follows: 

For the any given input slide X and corresponding label Y , it is 

ssumed that bidirectional ABMIL-GCN can fully simulate the map- 

ing function between X and Y . Therefore, the classification risk 

an be defined as 

 (g) := E p(X,Y ) [ l ce (g(X ) , Y ) ] (6) 

Where g ( · ) is the score function, which transforms the input 

ata X into predictions probability ˆ Y , l ce represents binary cross 

ntropy loss, p ( X, Y ) denotes an unknown joint probability distri- 

ution density function for each data point. E p(X,Y ) [ �] indicates the 

xpectation of (X, Y ) ∼ p(X, Y ) . 

The goal of binary classification is to learn the function g ( · ) 

hat minimizes the classification risk R ( g ). However, it is difficult 

o evaluate R ( g ) exactly as ground truth distribution of p ( X, Y ) is

nknown. Therefore, we minimize its empirical risk by calculating 

he average cross entropy loss of the training data instead: 

ˆ 
 (g) := 

1 

N 

N ∑ 

i =1 

l ce (g(X i ) , Y i ) (7) 

Here, N is the number of samples in the training set. 

The empirical risk after using the flooding optimization is de- 

ned as: 

˜ 
 (g) = 

∣∣ ˆ R (g) − b 
∣∣ + b (8) 

Where ˜ R (g) denote the flooded empirical risk. b is so-called 

he flood level . When 

ˆ R (g) ≥ b, ˜ R (g) = 

ˆ R (g) ≥ b; Whereas ˆ R (g) < b,
˜ 
 (g) ≥ b; therefore, ˜ R (g) ≥ b is always satisfied in both cases. Here, 

 could also be regarded as the lower bound of the loss function 

hen flooding regularization is applied. 

Meanwhile, it can be inferred that the MSE of flooded empirical 

isk is not higher than that of the empirical risk without flooding. 

SE( ̂  R (g) ≥ MSE( ̃  R (g)) (9) 

Furthermore, if the flood level b further satisfying the condi- 

ion that its value is between the original training loss and the 

est loss, the constraint on the MSE of the empirical risk will be 

ore stringent [45] . Therefore, inequality (9) can be transformed 

nto: 

SE( ̂  R (g) > MSE( ̃  R (g)) (10) 

However, optimal flood level is unknown in advance. To deter- 

ine the optimal value of b , an exhaustive hyper-parameter search 

as performed for the flood level with candidates selected from 

he interval of 0.00 to 0.14 with a fixed step size of 0.02. 

Fig. 2 is the variation curve of training accuracy and AUC with 

he flood level based on the validation accuracy. The result in 

ig. 2 shows that the training error of the models can be main- 

ained at a relatively low value when different flood level is ap- 

lied, indicating that flooding is applicable for GCN-based models. 

he marker placed on the flood level curve is the optimal value of 

, which is selected as a regularization term in the implementa- 

ion. In this case, b = 0.10 is chosen by performing the exhaustive 

earch in parallel models and between the original training loss 

nd the test loss. 

The relationship between the test loss and gradient amplitude 

f the training/test loss is visualized in Fig. 3 . The markers ‘ + ’
5 
n Fig. 3 indicate the test loss of the proposed model without 

ooding , while the markers ‘o’ indicate the test loss of the model 

ith flooding in the iteration. For each case, the color of plot be- 

omes darker (yellow → green) as the training epoch proceeds. 

s shown in Fig. 3 (a), the statistical gradient amplitude of the 

raining loss for ABMIL-GCN model with flooding is significantly 

arger than that of the model without flooding, which indicates 

hat flooding regularization can prevent the model from staying at 

ocal minima, thereby prone to achieve the optimal solution in the 

raining process. Meanwhile, the test loss for ABMIL-GCN model 

ith flooding can be preserved at a relatively low value compared 

o the model without flooding as the training proceeds, indicat- 

ng that the flooding regularization can effectively avoid overfit- 

ing. Fig. 3 (b) is the relationship between the test loss and gra- 

ient amplitude of the test loss in the case of with and without 

ooding regularization. The results showed that the gradient am- 

litude and the loss value of the ABMIL-GCN model with flood- 

ng are both smaller on the test set compared to the model with- 

ut flooding. Meanwhile, the fluctuation of the model with flood- 

ng are relatively small than those of the model without flood- 

ng in most iterations for the test set. Moreover, the test loss 

f the model without flooding ascends rather than descents as 

he training proceeds. This further demonstrated that the model 

ith flooding is more stable and generalizes better for external 

ata. 

.2. Results and discussion 

Table 1 shows the results of bidirectional ABMIL-GCN model 

ith and without flooding regularization on the Camelyon16 

ataset. Here, we use the indicators such as accuracy (ACC) and 

rea under curve (AUC) to evaluate the performance of the mod- 

ls. As can be seen in Table 1 , the results showed that ABMIL-GCN 

odel with flooding often improves test accuracy over the base- 

ine without flooding. The average prediction ACC and AUC of the 

roposed model with flooding optimization can reach 90.89% and 

.9149, which improved by 2.67% and 2.18% comparing with the 

odel without flooding regularization, respectively. Meanwhile, 

he standard deviations of ACC and AUC were both lower than 

.0033 and 0.0041 in 5 trials for bidirectional ABMIL-GCN with 
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Table 1 

Comparison results of the baseline models on camelyon16 dataset. 

Method Accuracy AUC Precision Sensitivity Specificity F-1 Score 

Mean-pooling 0.5984 ±0.0312 0.5387 ±0.0032 0.4990 ±0.1102 0.2612 ±0.1113 0.8050 ±0.1169 0.3149 ±0.0846 

Max-pooling 0.6419 ±0.0292 0.7011 ±0.0131 0.7642 ±0.1670 0.1973 ±0.1710 0.9375 ±0.0568 0.2640 ±0.1966 

ABMIL[43] 0.8233 ±0.0114 0.8581 ±0.0134 0.9400 ±0.0119 0.5714 ±0.0342 0.9775 ±0.0050 0.7101 ±0.0255 

CLAM[17] 0.8295 ±0.0085 0.8729 ±0.0124 0.9199 ±0.0540 0.6082 ±0.0271 0.9650 ±0.0278 0.7304 ±0.0076 

ABMIL-GCN(w/o FL) 0.8822 ±0.0090 0.8931 ±0.0099 0.9050 ±0.0238 0.7714 ±0.0153 0.9500 ±0.0137 0.8326 ±0.0123 

ABMIL-GCN(w/ FL) 0.9089 ±0.0033 0.9149 ±0.0041 0.9463 ±0.0093 0.8061 ±0.0102 0.9719 ±0.0054 0.8705 ±0.0051 

Fig. 3. (a) The relationship between the test loss and gradient amplitude of the 

training loss. (b) The relationship between the test loss and gradient amplitude of 

the test loss. The different shaped markers (‘o’ or ‘ + ’) in the figures indicate the 

model with and without flooding regularization. The same shaped markers denote 

the training/testing epoch of a single weakly supervised model in the iteration. The 

color becomes darker (yellow → green) as the training iteration proceeds. The large 

black ‘o’ and ‘ + ’ indicate the convergence point of the corresponding model. 
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tions. 
ooding regularization. This means that the standard deviation of 

oth ACC and AUC value for the ABMIL-GCN model with flooding is 

educed to approximately 1/3 of the baseline, further demonstrat- 

ng the stability of the model when flooding is applied. 

Table 1 also compared the performance of ABMIL-GCN with 

ther benchmark weakly supervised models, such as multiple in- 

tance learning (MIL) based Mean-pooling, Max-pooling, ABMIL 
6 
43] and CLAM [17] on the same data set. The results showed that 

he maximum accuracy of multiple instance learning with tradi- 

ional pooling operators such as Mean-pooling and Max-pooling 

s not better than 65%. This is mainly because these methods do 

ot consider the contribution of each image patch for the entire 

SI when processing image patches simultaneously in a batch. 

herefore, when attention-based MIL pooling (ABMIL) is applied, 

t can improve the performance of MIL model by weighted aver- 

ging of instances. While for CLAM, instance-level clustering con- 

traints are combined with attention-based pooling operation to 

lassify WSIs efficiently and accurately. Specifically, instance-level 

lustering constraints is applied to refine the feature space, and 

ttention-based pooling is used to identify sub-regions of high di- 

gnostic value based on the learned features of the WSI. Therefore, 

BMIL and CLAM are more effective than traditional MIL based 

ooling operators for WSI prediction, such as Mean-pooling, Max- 

ooling. However, in real scenarios, image patches of each WSI 

ave a fixed arrangement in space, which means that adjacent im- 

ge patches tend to be spatially correlated. The frameworks based 

n the I.I.D assumption are not fully applicable for WSI predic- 

ion because they ignore the spatial information between image 

atches and treat each image patch as an individual. Therefore, the 

erformance of ABMIL-GCN can be improved by establishing a bi- 

irectional information transfer mechanism for the neighbor image 

atches in the WSI, which is remarkably better than that of the 

BMIL and CLAM do. 

To gain deep insight into the ABMIL-GCN model, the obtained 

atent feature representations of the slides in the test set are vi- 

ualized by T-SNE ( Fig. 4 ). In Fig. 4 (a), the red dots and blue dots

epresent the slides with and without lymph node metastases, re- 

pectively. The result showed that each category is clustered to- 

ether and the different categories have sharp boundaries in the 

atent space, which demonstrates the effectiveness of the model. 

eanwhile, latent feature representations of these slides obtained 

y CLAM are visualized for comparison, as shown in Fig. 4 (b). The 

esult showed that the red dots and blue dots are clustered into 

hree cluster centers in the latent space, and the two classes are 

ixed at the boundary. This is because CNN-based CLAM treats 

mage patches at different positions in the slide as independent re- 

ions. Whereas the bidirectional ABMIL-GCN make predictions by 

apturing the contextual-aware dependencies of patches in each 

SI. Furthermore, the false negative rate of the proposed model 

s 18.37%, which reduced by 20% compared with CLAM. While the 

alse positive rate of the proposed model is 2.5%, which is on par 

ith CLAM. This is due to the fact that each positive slide con- 

ains approximately less than 10% of the cancer area on average for 

amelyon16 dataset. While only a portion of image patches are in- 

olved in training when CLAM is applied, resulting in the presence 

f a large number of negative areas affecting the prediction of pos- 

tive slide. However, for bidirectional ABMIL-GCN, all the node in 

he constructed graph are participate the training process through 

he nonlinear interactions between them. Therefore, bidirectional 

BMIL-GCN can greatly reduce the false negative rate and false 

ositive rate, which are of great significance for clinical applica- 
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Fig. 4. (a) T-SNE feature embedding of WSI using ABMIL-GCN (with flooding).(b) 

T-SNE feature embedding of WSI using CLAM[17]. 
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Fig. 5 shows the receiver operating characteristic curve (ROC) of 

he our bidirectional ABMIL-GCN (with flooding) model and other 

 baseline models including ABMIL-GCN (without flooding), Mean- 

ooling, Max-pooling, ABMIL and CLAM. In Fig. 5 , we use the av- 

rage performance of ROC curve over 5 trials as the final result 

o increase the confidence of each model. Here, all the models 

re under the same configuration environment. It can be observed 

hat the area under the curve (AUC) for bidirectional ABMIL-GCN 

odel with flooding can reach 0.92, which illustrates that the pro- 

osed model has outperformed other baseline models across al- 

ost all the possible classification thresholds, indicating the su- 

erior performance of the proposed model in whole slide image 

rediction. 

Bidirectional ABMIL-GCN model makes prediction by consider- 

ng potential nonlinear interactions between instances and aggre- 

ating the instances (nodes) features into slide-level based on the 

ated attention mechanism. Here, the input of the network is a 

raph representation embedded with all node features, which en- 

bles all instances in the WSI to participate in the training pro- 

ess. Therefore, pixel-wise attention heatmap can be visualized 
7 
nd interpreted by converting the obtained attention scores of the 

nstance into percentiles and mapping the normalized scores to 

heir corresponding spatial location in the original slide. Fig. 6 

howed the interpretability heatmaps generated by ABMIL-GCN 

odel, state-of-the-art method and the pixel-wise annotations for 

he corresponding WSI. In Fig. 6 , (a 1 ), (a 2 ), (b 1 ) and (b 2 ) are the

nterpretable heatmaps of WSI and zoomed in view of ROI, which 

re obtained by bidirectional ABMIL-GCN and CLAM, respectively. 

ig. 6 (c 1 ) and (c 2 ) are the corresponding ground truth of the WSI

mage. In Fig. 6 (c 1 ) and (c 2 ), the area within the blue curve is

he pixel-wise annotation of lymph node metastases, which is pro- 

ided by computational pathology group in Medical Center of the 

adboud University. As shown in Fig. 6 (a 1 )-(c 2 ), it can be con- 

luded that bidirectional ABMIL-GCN model is capable of provid- 

ng with more true positive instances than CLAM. The heatmap 

btained using bidirectional ABMIL-GCN could accurately delineate 

he boundary between tumor and normal, which have good con- 

istency with human pathology expertise. This is mainly because 

raph networks could form effective context-aware relationships 

y establishing connections and interaction mechanisms between 

he current node and its neighbors. The architecture of graph fea- 

ure representation embedding is able to maximize the optimiza- 

ion performance of gated attention-based MIL pooling through a 

idirectional information transfer mechanism between adjacent in- 

tances, thereby avoiding the appearance of false negative and false 

ositive instances. Fig. 6 (d 1 )-(f 2 ) is a positive slide which contains 

nly a fraction of positive instances. It is predicted as positive and 

he ROI can be localized by heatmap in Fig. 6 (d 1 ) and (d 1 ). It

an be seen that the obtained ROI has good consistency with the 

round truth. However, it is predicted to be negative when CLAM is 

pplied. Therefore, bidirectional ABMIL-GCN can effectively reduce 

he false positive rate of WSI prediction by introducing context- 

are information of the slide, which is an essential indicator for 

pplication in realistic scenarios. 

However, the proposed ABMIL-GCN also have limitations in rep- 

esenting contextual information of whole slides. For instance, the 

egree of correlation between a node and surrounding nodes in 

he graph is not always the same in practice. While the ABMIL- 

CN model regards the surrounding patches of each patch as equal 

ontributions, which affects the performance of the model. There- 

ore, the next step is to extend our work to add weights of sur- 

ounding nodes for each node in the graph to further improve the 

erformance of the model. 
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Fig. 6. Interpretable heatmaps of the WSIs. (a 1 ), (a 2 ), (d 1 ) and (d 2 ) are the obtained interpretable heatmaps of WSI and corresponding zoom-in view of them using bidi- 

rectional ABMIL-GCN (with flooding regularization). (b 1 ), (b 2 ), (e 1 ) and (e 2 ) are the obtained interpretable heatmaps of WSI and corresponding zoom-in view of them using 

CLAM. (c 1 ) and (f 1 ) are pixel-wise annotation of lymph node metastases in hematoxylin and eosin stained (H&E) whole slide images. (c 2 ) and (f 2 ) are zoomed in view of (c 1 ) 

and (f 1 ), respectively. 
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. Conclusions 

Real-time, objective, and accurate WSI prediction and ROI lo- 

alization are of great significance for the diagnosis and treat- 

ent of critical illness. The existing weakly supervised learning 

ethods are mainly based on the assumption of i.i.d, which re- 

ard the patches at different positions in the WSI as indepen- 

ent regions, resulting in the model unable to effectively utilize 

ontext-aware information to predict WSI tags and locate ROI. 

herefore, bidirectional ABMIL-GCN framework is proposed to sim- 

late context-aware topology structure of the pathological slide 

hrough the combination of graphical feature representation em- 

edding and gated attention-based pooling. The results indicate 

hat bidirectional ABMIL-GCN could not only achieve higher pre- 

iction accuracy with flooding regularization, but also provide 

uman-interpretable features with localization heatmap. The aver- 

ge prediction ACC and AUC of the proposed model after flooding 

ptimization can reach 90.89% and 0.9149 on Camelyon16 dataset, 

espectively. The corresponding standard deviation of ABMIL-GCN 

odel is lower than 0.0033 and 0.0041, which outperform the 

tate-of-the-art algorithms. Particularly, bidirectional ABMIL-GCN 

an greatly reduce the false negative rate of WSI prediction, which 

s of great significance for clinical diagnosis. The superior per- 

ormance of this framework provides a new paradigm for high- 

recision prediction and interpretable ROI localization of whole 

lide images in computational pathology. 
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