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Background and Objective: Whole slide image (WSI) classification and lesion localization within giga-pixel
slide are challenging tasks in computational pathology that requires context-aware representations of his-
tological features to adequately infer nidus. The existing weakly supervised learning methods mainly treat
different locations in the slide as independent regions and cannot learn potential nonlinear interactions
between instances based on i.i.d assumption, resulting in the model unable to effectively utilize context-
ware information to predict the labels of WSIs and locate the region of interest (ROI).
Methods: Here, we propose an interpretable classification model named bidirectional Attention-based
Multiple Instance Learning Graph Convolutional Network (ABMIL-GCN), which hierarchically aggregates
context-aware features of instances into a global representation in a topology fashion to predict the slide
labels and localize the region of lymph node metastasis in WSIs.
Results: We verified the superiority of this method on the Camelyon16 dataset, and the results show
that the average predicted ACC and AUC of the proposed model after flooding optimization can reach
90.89% and 0.9149, respectively. The average accuracy and ACC score are improved by more than 7% and
4% compared with the existing state-of-the-art algorithms.
Conclusions: The results demonstrate that context-aware GCN outperforms existing weakly supervised
learning methods by introducing spatial correlations between the neighbor image patches, which also
addresses the ‘accuracy-interpretability trade-off’ problem. The framework provides a novel paradigm for
the clinical application of computer-aided diagnosis and intelligent systems.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Histopathological whole-slide image (WSI) classification and
lesion localization within giga-pixel slide are challenging tasks
in computational pathology that requires context-aware repre-
sentations of histological features to adequately infer nidus. To
date, manual inspection of histopathological slides remains the
gold standard for severe disease diagnosis, especially for assess-
ing malignancy progression, lesion staging, and further treatment
of cancer-related regions [1]. However, it suffers from long inspec-
tion cycle and serious reliance on subjective interpretation, which
cannot satisfy the demand of precision medicine. Therefore, it is an
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urgent need to develop artificial intelligent systems for automatic
analysis of whole slide images (WSI).

In the field of computational pathology, deep learning has pre-
sented a great potential for real-time, objective, and reproducible
clinical-grade predictions of giga-pixel WSIs [2-6]. However, deep
learning based approaches require either manual annotation of
giga-pixel WSIs using supervised leaning or only slide-level labels
using weakly supervised learning. Supervised learning algorithms
use ground truth correspondences to construct a deep model,
which have achieved state-of-the-art (SOTA) performance across
large number of computer vision tasks including image segmenta-
tion and lesion boundaries localization [7-10]. However, supervised
learning algorithms should provide pixel-wise labeling of whole
slide image. It is labor-intensive and time-consuming, which lim-
its its application in realistic clinical scenarios.
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To address this issue, existing supervised learning methods
mainly adopt multiple instance learning (MIL), which eliminate
the laborious and time-consuming labeling process by assigning
one label to the whole bag [11-14]. However, the MIL baseline
model could only obtain the spatial positions of top-ranked in-
stances [15-17], which is prone to miss most of the positive in-
stances in the WSI. This is because these frameworks are designed
under the instance independent and identical distribution (i.i.d.)
hypothesis, which ignores the correlations between instances in a
bag. To better utilize the context-aware information of the WSI, re-
searchers consider introducing instance-level constraints [18-21],
multi-scale features, feature representations and Transformer ar-
chitectures into MIL-based models to capture local and global cor-
relations between the instances of WSI, thereby improving the
overall performance of the model.

Specifically, many researchers attempt to introduce instance-
level constraints in MIL to improve the performance of the weakly
supervised model. Nevertheless, in the iteration process, only top-
k instances of WSIs are selected for feature aggregation before
the output layer [22-24]. Therefore, it requires massive amounts
of WSIs to build the model since only a fraction of the instances
within each slide could actually participate in the training pro-
cess. Moreover, multi-scale feature assisted MIL learning is pro-
posed as an intuitive method to simulate the workflow of pathol-
ogists interpreting WSIs, which obtains context-aware features of
the slide by extracting the patch features at multiple scales (mag-
nifications) [25-27]. Likewise, multi-scale feature based methods
also cause computational burden due to the large volume of data
and are not always applicable in certain cases. Even some stud-
ies get conflicting conclusions when multi-scale features are in-
troduced. For instance, Chen et al. [13] have demonstrated that
multiple instance learning with multi-scale features does not al-
ways outperform single-scale approaches. The effective combina-
tion of multiple features is also a worth considering issue when
multi-scale feature is applied in MIL learning [28-30]. Feature rep-
resentation embedding is another perspective for WSI predictions,
which is prone to maintain the original spatial locations of patches
and avoid information redundancy [31-33]. In these studies, image
patches of the WSI can be highly compressed and represented as
feature vectors by contrastive learning or GAN-based methods. Af-
terwards, the feature vectors are spatially arranged to form a data
cube according to the location of the source patches in the slide,
which is then fed into the CNN-based network as a whole for in-
terpretable classification using the attention mechanism. However,
this approach cannot be utilized in realistic clinical scenarios be-
cause the large compression ratio or sparse feature representation
of gigapixel WSI will lead to limited generalization ability for the
model at test time or failure to provide useful slide-level inter-
pretability.

Currently, the MIL-based approaches have achieved exciting im-
provements in WSI prediction and regions of interest (ROI) local-
ization. However, almost all MIL-related methods are based on the
i.i.d. assumption and are not fully applicable for the real WSI clas-
sification task. This is due to the fact that these methods cannot
fully simulate the context-aware structure of image patches with
specific spatial location in WSI by capturing the intrinsic relation-
ship between different magnifications.

In the realistic scenarios, pathologists should consider both the
feature representation of the region and the nonlinear interactions
between the regions when making final diagnostic predictive de-
terminations. Therefore, it would be much desirable to introduce
the dependencies between the instances in the bag for multiple
instance learning algorithm. Recently, some researchers attempt
to use Transformer architecture to build the relationship between
image patches to overcome the problem of irrelevance between
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instances caused by the i.i.d. assumption in MIL-based methods
[34-36]. However, these methods are mainly based on the self-
attention mechanism to establish the dependencies between image
patches, which could cause a large burden for the computational
device in WSI prediction [37-39]. To tackle this issue, a subset of
image patches is sampled randomly from the WSI to form a sparse
representation of the slide, and then fed into the Transformer ar-
chitecture to simulate the image patches located in WSI. However,
it will fall into the same dilemma as the instance-level constrained
approach does [40].

Inspired by pathologists interpreting pathological slides us-
ing microscopes at different magnifications, we propose a
context-aware graph convolution framework named bidirectional
Attention-based Multiple Instance Learning Graph Convolutional
Network (ABMIL-GCN), which not only considers the feature rep-
resentation of each patch in the slide, but also provides potential
non-linear interactions between the neighbor patches. This frame-
work builds context-aware information of slides via patch feature
embedding to form a WSI-graph representation for final diagnosis
and prediction. It breaks the limitations of conventional i.i.d as-
sumption about instances in a bag, which could greatly improve
the performance of attention-based MIL pooling aggregation by
bidirectional message passaging mechanism between the neighbor
patches. By embedding context-aware information for each patch,
it not only improves the overall prediction accuracy of WSI images,
but also avoids information redundancy when applying multi-scale
feature-based MIL learning. Furthermore, the non-linear interac-
tions of the neighbor instances and spatial feature embedding con-
straints can effectively reduce false negative and false positive in-
stances in slides, which provides a basis for locating ROIs with high
accuracy.

The main scientific contributions are summarized as follows:

Bidirectional ABMIL-GCN framework is proposed to simulate
local- and global- topology structure of the pathology patches
in whole slide images, which fully preserves the original spatial
relations for the slides so that the model can capture structural
correlation between the neighbor patches.

Under the i.i.d. assumption, misclassification of individual patch
may alter the prediction of slide labels, resulting in a large
number of false negatives and false positives. Here, bidirectional
ABMIL-GCN framework embeds the spatial location of neigh-
boring instances for each patch, which can reduce the false
negative and false positive rate of instances through inter-patch
message passing mechanism.

Flooding regularization is applied in bidirectional ABMIL-GCN
framework to prevent further optimization of the training loss
when it reaches a reasonably small value (called flood level).
Therefore, the approach forces the training loss float around the
flood level by setting a lower bound on it.

The interpretability heat map of WSI can also be obtained by
bidirectional ABMIL-GCN, which utilize the gradient of highly
correlated node groups in the graph to obtain more accu-
rate attention weights of the instances. Therefore, ROI in H&E-
stained slides has good consistency with the pixel-wise anno-
tated ground truth.

2. Methods
2.1. Slide-level graph construction

Given a training WSI dataset D = {X;, Y,-}f’=], where X;and Y; are
the ith input WSI and its corresponding class label, Y; € {0, 1} for

binary classification, N is the number of WSI in the training pro-
cess. To construct a graph G for each image in the training dataset,
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Fig. 1. The overview of the data reprocessing, ABMIL-GCN framework and interpretability. (a) The preprocessing of a whole slide image contains tissue foreground segmenta-
tion (left) and patching (right). (b) Image patches are encoded into a descriptive feature representations (left) by a truncated Resnet50, which can be viewed as nodes. These
nodes are embedded in the graph to form a context-aware slide-level graph representation based on its spatial coordinates (right). Here, the slide-level graph representation
can be expressed as G; = (H;A;). (c) During the training and inference stages, the constructed graph passed through a graph convolutional layer to obtain the context-aware
topology information of the WSI. An attention-based MIL pooling network is applied to aggregate patch-level information into slide-level representations, which are used for
final diagnostic prediction. Specifically, the attention-based MIL pooling network ranks each region in the slide and assigns an attention score based on its relative importance
to the slide-level label. Meanwhile, the attention scores can be visualized as a heat map to identify ROIs and interpret the morphology feature used for diagnosis.

the H&E-stained WSI is first down-sampled and converted into the
HSV color space. Then, automatic foreground segmentation is per-
formed for the WSI using Otsu’s binarization on the saturation
channel to separate H&E-stained tissue from the background. Thus,
the foreground of the X; can be obtained by magnification conver-
sion and image registration. Afterwards, the foreground of WSI is
segmented into non-overlapping image patches of size 256 x 256.
Meanwhile the coordinates of the segmented patches are also pre-
served in this process. Fig. 1(a) shows the entire preprocessing pro-
cess of the input WSIL

In weakly supervised learning, given a input whole slide im-
age X; and a corresponding label Y;. Each slide X; contains multiple

instances, which can be represent as X; = {x; j}‘];l. Where x;; de-
note the jth patch (instance) of the slide X;. Here, each instance
x;; of slide X; implies a binary label y;;, which is not given ex-
actly. P is the number of instances in the X;, which varies widely
for each WSI. According to multi-instance learning assumption, the
relationship between instance label y;; and slide label Y; is as
follows:

P
0,i ii=0,
vi— {0V M)

1, otherwise.
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The instance x;; can be feature extracted by a truncated
ResNet50 and denoted as h; ; € R1*1024 in the latent space. There-
fore, the corresponding feature representation of the WSI can be
expressed as H; = {hi,j}’j’:1 mathematically. Here, H; ¢ RP*1024,

To utilize the contextual-aware information of the WSI in the
embedding space, bidirectional ABMIL-GCN framework is proposed
to improve the prediction performance of WSI. The idea of this
method is to construct a graphical representation for a WSI. Fol-
low this route, the contextual-aware information can be efficiently
utilized to make predictions through the bidirectional informa-
tion transfer mechanism between neighbor patches in the graph.
Specifically, the foreground of the WSI is segmented into non-
overlapping image patches called nodes, and h;; is regarded as
the feature representation for the node x;;. Each node is con-
nected with the neighbor nodes called edges. The current image
patch is associated with the surrounding image patches through
the edges according to the preserved coordinates. Here, we mod-
els an 3 x 3 image receptive field of the WSI image by building
an 8 nearest neighbor graph neural network for each patch. The
slide-level graph representation can be expressed as G; = (HjA;),
which is shown in Fig. 1(b). where A; is the adjacency matrix of
graph representation G;for the input slide X;. where A; is expressed
as:

Aii’j, =

1

(2)

{1, if x;; is adjacent to X; j,

0, otherwise.

where j, j’ € {1, 2, ..., P}.

2.2. The framework of ABMIL-GCN

As shown in Fig. 1(c), the ABMIL-GCN network mainly con-
sists of a graph convolutional layer, layer normalization (LN) op-
eration, a gated attention-based MIL pooling layer and a fully con-
nected layer. Here, the graph convolutional layer [41] is the core of
the framework because it treats different locations in the slide as
context-aware regions and learns potential nonlinear interactions
between instances. Graph convolutional layer encodes the graph
structure to obtain the slide-level morphological feature represen-
tation of WSI. This means that we learn a GCN mapping function
for a WSI-Graph G;: H; € RP*din — HOUt ¢ RP*doue, which iteratively
aggregates node features in spatial neighborhoods and predicts the
WSI through bidirectional information transfer between the nodes.
In the framework, layer normalization [42] is also added at the
output of a graph convolutional layer for each given WSI to accel-
erate model convergence, prevent gradient vanishing and improve
generalization ability. In our case, the context-aware WSI feature
representation Hi"”f after GCN layer can be expressed as follows:

1 1
Hovt = {houf} =RELU(LN(D, "2A;D, 2LN(H)W;)) (3)

Where H e RP*312 represent the output graph representation
of H;, h € RT>2 is the jth element of H". Here, A=A +1(4 e
RP*P) denote the new adjacency matrix of the bidirectional GCN
by adding an identity matrix I. D} = y" f\{”/ (D; € RP*PY is the de-
gree matrix of the adjacency matrix A;. W; e R1924x512 denote the
connection weights learned by the graph convolutional layer.

For whole slide image prediction and lesion localization with-
out pixel-wise annotation, ABMIL-GCN uses a gated attention-
based MIL pooling [43] to aggregate patch-level features into slide-
level representations, as it provides the model with the flexibility
of selectively aggregating information from multiple relevant node
families to predict the slide-level labels.
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Therefore, the slide-level feature representation for graph G; can
be given by:

Zauhout(zl eRlelZ) (4)

where

exp{wT (tanh(Vhe) o sig‘m(Uh?LJ’.fT))}
: (5)

(1,:]' =73
> exp{wT (tanh(Vh"“fT) o) szgm(Uh"‘]‘.fT))}
j=1

a;j € R denotes the attention score of the node feature h"“f
in WSI, and it can provide interpretable feature for WSI predlc-
tions via heat map. w € R2%6x1 [ ¢ R256x512 3pd V € R296%512 gre
learned parameter matrices. ® and sigm( - ) represent element-
wise multiplication operation and sigmoid function, respectively.
The superscript T denotes the transpose operation. In the frame-
work, gated attention-based MIL pooling introduces nonlinearities
for the weakly supervised learning, which may potentially elimi-
nate troublesome linearity generated by tanh( - ).

After gated attention-based MIL pooling operation, the obtained
slide-level feature representation z; passes through a fully con-
nected layer to make a prediction ¥; for the slideX;. In the experi-
ment, cross entropy loss is applied in implementation to minimize
the K-L divergence between predicted label {Y} ;and ground truth

vy,
3. Experiments
3.1. Dataset and implement details

The experimental dataset is Camelyon16, which includes a
total of 399 WSIs of sentinel lymph node from two indepen-
dent data sets collected in Radboud University Medical Center
(Nijmegen, The Netherlands), and the University Medical Center
Utrecht (Utrecht, The Netherlands) . The dataset contains pixel-
wise annotations for lymph node metastases in hematoxylin and
eosin stained (H&E) whole slide images (WSIs), which is one of
the largest annotated, public digital pathology datasets available.
The total number of official training WSIs is 270, including 159
normal tissue slides and 111 lymph node metastases slides. The
270 slides can be split into training set and validation set accord-
ing the ratio of 8.5:1.5. Afterwards, the performance of the model
was tested using 129 slides, including 80 normal tissue slides and
49 lymph node metastasis slides. In the implementation, each WSI
was cropped into approximately 44, 274 256 x 256 image patches
at 40 x magnification, with some WSI having graph size as large
as 142, 949 instances. Adam optimizer is applied in the implemen-
tation with the initialized learning rate of 1 x 10~4 and a weight
decay of 1 x 1076. The cross-entropy loss is used in the iteration
to minimize the divergence between the distribution of predicted
class probability and the ground truth. Meanwhile, early stopping
is also applied to avoid overfitting of the weakly supervised model.
Our model was trained on a INVIDA RTX 3090 (24GB) for 100
epochs with a batch size of 1.

In the implementation, performance of early stopping highly
depends on the iterative dynamics and is extremely sensitive to
the randomness in the optimization process. This means that early
stopping at the optimal epoch in a single training path does not
necessarily perform well in another round of training. In [44],
Kiryo et al. observed that overfitting can be occurred in weakly su-
pervised learning when the empirical risk goes below zero. There-
fore, a gradient ascent technique is proposed to maintain the em-
pirical risk non-negative to prevent overfitting, which can be gen-
eralized and applied to weakly supervised settings. In our case,
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flooding [45] is introduced to bidirectional ABMIL-GCN to stabilize
performance of the model and further prevent overfitting. The idea
of flooding is to add the flood level as a regularization term to the
loss function, which can effectively prevent overfitting by setting a
lower bound on the training loss and forcing the loss to maintain
greater than or equal to flood level during training. This technique
can also improve the accuracy of the test set and reduce the MSE
of the classification risk in a certain condition. The effectiveness of
the flooding is proved as follows:

For the any given input slide X and corresponding label Y, it is
assumed that bidirectional ABMIL-GCN can fully simulate the map-
ping function between X and Y. Therefore, the classification risk
can be defined as

R(®) = Epxy)llee (8(X). Y)] (6)

Where g( - ) is the score function, which transforms the input
data X into predictions probability ¥, l.. represents binary cross
entropy loss, p(X, Y) denotes an unknown joint probability distri-
bution density function for each data point. E,x y)[.] indicates the
expectation of (X,Y) ~ p(X,Y).

The goal of binary classification is to learn the function g( - )
that minimizes the classification risk R(g). However, it is difficult
to evaluate R(g) exactly as ground truth distribution of p(X, Y) is
unknown. Therefore, we minimize its empirical risk by calculating
the average cross entropy loss of the training data instead:

N
R@) 1= 1 D leeB8X). YD) Q)
i=1

Here, N is the number of samples in the training set.
The empirical risk after using the flooding optimization is de-
fined as:

R(g) = [R(g) —b| +b (8)

Where R(g) denote the flooded empirical risk. bis so-called
the flood level. When R(g) > b, R(g) = R(g) > b; Whereas R(g) < b,
R(g) > b; therefore, R(g) > b is always satisfied in both cases. Here,
b could also be regarded as the lower bound of the loss function
when flooding regularization is applied.

Meanwhile, it can be inferred that the MSE of flooded empirical
risk is not higher than that of the empirical risk without flooding.

MSE(R(g) > MSE(R(g)) )

Furthermore, if the flood level b further satisfying the condi-
tion that its value is between the original training loss and the
test loss, the constraint on the MSE of the empirical risk will be
more stringent [45]. Therefore, inequality (9) can be transformed
into:

MSE(R(g) > MSE(R(g)) (10)

However, optimal flood level is unknown in advance. To deter-
mine the optimal value of b, an exhaustive hyper-parameter search
was performed for the flood level with candidates selected from
the interval of 0.00 to 0.14 with a fixed step size of 0.02.

Fig. 2 is the variation curve of training accuracy and AUC with
the flood level based on the validation accuracy. The result in
Fig. 2 shows that the training error of the models can be main-
tained at a relatively low value when different flood level is ap-
plied, indicating that flooding is applicable for GCN-based models.
The marker placed on the flood level curve is the optimal value of
b, which is selected as a regularization term in the implementa-
tion. In this case, b=0.10 is chosen by performing the exhaustive
search in parallel models and between the original training loss
and the test loss.

The relationship between the test loss and gradient amplitude
of the training/test loss is visualized in Fig. 3. The markers ‘+’
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Fig. 2. The solid lines represent the variation curve of training accuracy (ACC) and
AUC with the flood level b, respectively. The marker placed on the flood level curve
is the optimal value of b. The horizontal dashed lines denote the ACC and AUC score
without the flood level.

in Fig. 3 indicate the test loss of the proposed model without
flooding, while the markers ‘0’ indicate the test loss of the model
with flooding in the iteration. For each case, the color of plot be-
comes darker (yellow — green) as the training epoch proceeds.
As shown in Fig. 3(a), the statistical gradient amplitude of the
training loss for ABMIL-GCN model with flooding is significantly
larger than that of the model without flooding, which indicates
that flooding regularization can prevent the model from staying at
local minima, thereby prone to achieve the optimal solution in the
training process. Meanwhile, the test loss for ABMIL-GCN model
with flooding can be preserved at a relatively low value compared
to the model without flooding as the training proceeds, indicat-
ing that the flooding regularization can effectively avoid overfit-
ting. Fig. 3(b) is the relationship between the test loss and gra-
dient amplitude of the test loss in the case of with and without
flooding regularization. The results showed that the gradient am-
plitude and the loss value of the ABMIL-GCN model with flood-
ing are both smaller on the test set compared to the model with-
out flooding. Meanwhile, the fluctuation of the model with flood-
ing are relatively small than those of the model without flood-
ing in most iterations for the test set. Moreover, the test loss
of the model without flooding ascends rather than descents as
the training proceeds. This further demonstrated that the model
with flooding is more stable and generalizes better for external
data.

3.2. Results and discussion

Table 1 shows the results of bidirectional ABMIL-GCN model
with and without flooding regularization on the Camelyon16
dataset. Here, we use the indicators such as accuracy (ACC) and
area under curve (AUC) to evaluate the performance of the mod-
els. As can be seen in Table 1, the results showed that ABMIL-GCN
model with flooding often improves test accuracy over the base-
line without flooding. The average prediction ACC and AUC of the
proposed model with flooding optimization can reach 90.89% and
0.9149, which improved by 2.67% and 2.18% comparing with the
model without flooding regularization, respectively. Meanwhile,
the standard deviations of ACC and AUC were both lower than
0.0033 and 0.0041 in 5 trials for bidirectional ABMIL-GCN with
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Table 1

Comparison results of the baseline models on camelyon16 dataset.
Method Accuracy AUC Precision Sensitivity Specificity F-1 Score
Mean-pooling 0.5984+0.0312  0.5387+0.0032  0.4990+0.1102  0.2612+0.1113  0.8050+0.1169  0.3149+0.0846
Max-pooling 0.6419+0.0292  0.7011+0.0131 0.7642+0.1670  0.1973+0.1710  0.9375+0.0568  0.2640+0.1966
ABMIL[43] 0.8233+0.0114  0.8581+0.0134  0.9400+0.0119  0.5714+0.0342  0.9775+0.0050  0.7101+0.0255
CLAM[17] 0.8295+0.0085  0.8729+0.0124  0.9199+0.0540  0.6082+0.0271 0.9650+0.0278  0.7304+0.0076
ABMIL-GCN(w/o FL) ~ 0.8822+0.0090  0.8931+0.0099  0.9050+0.0238  0.7714+0.0153  0.9500+0.0137  0.8326+0.0123
ABMIL-GCN(w/ FL) 0.9089+0.0033  0.9149+0.0041  0.9463+0.0093  0.8061+0.0102  0.9719+0.0054  0.8705+0.0051
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Fig. 3. (a) The relationship between the test loss and gradient amplitude of the
training loss. (b) The relationship between the test loss and gradient amplitude of
the test loss. The different shaped markers (‘0’ or ‘+') in the figures indicate the
model with and without flooding regularization. The same shaped markers denote
the training/testing epoch of a single weakly supervised model in the iteration. The
color becomes darker (yellow — green) as the training iteration proceeds. The large
black ‘0’ and ‘+’ indicate the convergence point of the corresponding model.

flooding regularization. This means that the standard deviation of
both ACC and AUC value for the ABMIL-GCN model with flooding is
reduced to approximately 1/3 of the baseline, further demonstrat-
ing the stability of the model when flooding is applied.

Table 1 also compared the performance of ABMIL-GCN with
other benchmark weakly supervised models, such as multiple in-
stance learning (MIL) based Mean-pooling, Max-pooling, ABMIL

[43] and CLAM [17] on the same data set. The results showed that
the maximum accuracy of multiple instance learning with tradi-
tional pooling operators such as Mean-pooling and Max-pooling
is not better than 65%. This is mainly because these methods do
not consider the contribution of each image patch for the entire
WSI when processing image patches simultaneously in a batch.
Therefore, when attention-based MIL pooling (ABMIL) is applied,
it can improve the performance of MIL model by weighted aver-
aging of instances. While for CLAM, instance-level clustering con-
straints are combined with attention-based pooling operation to
classify WSIs efficiently and accurately. Specifically, instance-level
clustering constraints is applied to refine the feature space, and
attention-based pooling is used to identify sub-regions of high di-
agnostic value based on the learned features of the WSI. Therefore,
ABMIL and CLAM are more effective than traditional MIL based
pooling operators for WSI prediction, such as Mean-pooling, Max-
pooling. However, in real scenarios, image patches of each WSI
have a fixed arrangement in space, which means that adjacent im-
age patches tend to be spatially correlated. The frameworks based
on the LLD assumption are not fully applicable for WSI predic-
tion because they ignore the spatial information between image
patches and treat each image patch as an individual. Therefore, the
performance of ABMIL-GCN can be improved by establishing a bi-
directional information transfer mechanism for the neighbor image
patches in the WSI, which is remarkably better than that of the
ABMIL and CLAM do.

To gain deep insight into the ABMIL-GCN model, the obtained
latent feature representations of the slides in the test set are vi-
sualized by T-SNE (Fig. 4). In Fig. 4(a), the red dots and blue dots
represent the slides with and without lymph node metastases, re-
spectively. The result showed that each category is clustered to-
gether and the different categories have sharp boundaries in the
latent space, which demonstrates the effectiveness of the model.
Meanwhile, latent feature representations of these slides obtained
by CLAM are visualized for comparison, as shown in Fig. 4(b). The
result showed that the red dots and blue dots are clustered into
three cluster centers in the latent space, and the two classes are
mixed at the boundary. This is because CNN-based CLAM treats
image patches at different positions in the slide as independent re-
gions. Whereas the bidirectional ABMIL-GCN make predictions by
capturing the contextual-aware dependencies of patches in each
WSI. Furthermore, the false negative rate of the proposed model
is 18.37%, which reduced by 20% compared with CLAM. While the
false positive rate of the proposed model is 2.5%, which is on par
with CLAM. This is due to the fact that each positive slide con-
tains approximately less than 10% of the cancer area on average for
Camelyon16 dataset. While only a portion of image patches are in-
volved in training when CLAM is applied, resulting in the presence
of a large number of negative areas affecting the prediction of pos-
itive slide. However, for bidirectional ABMIL-GCN, all the node in
the constructed graph are participate the training process through
the nonlinear interactions between them. Therefore, bidirectional
ABMIL-GCN can greatly reduce the false negative rate and false
positive rate, which are of great significance for clinical applica-
tions.
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Fig. 4. (a) T-SNE feature embedding of WSI using ABMIL-GCN (with flooding).(b)
T-SNE feature embedding of WSI using CLAM[17].

Fig. 5 shows the receiver operating characteristic curve (ROC) of
the our bidirectional ABMIL-GCN (with flooding) model and other
5 baseline models including ABMIL-GCN (without flooding), Mean-
pooling, Max-pooling, ABMIL and CLAM. In Fig. 5, we use the av-
erage performance of ROC curve over 5 trials as the final result
to increase the confidence of each model. Here, all the models
are under the same configuration environment. It can be observed
that the area under the curve (AUC) for bidirectional ABMIL-GCN
model with flooding can reach 0.92, which illustrates that the pro-
posed model has outperformed other baseline models across al-
most all the possible classification thresholds, indicating the su-
perior performance of the proposed model in whole slide image
prediction.

Bidirectional ABMIL-GCN model makes prediction by consider-
ing potential nonlinear interactions between instances and aggre-
gating the instances (nodes) features into slide-level based on the
gated attention mechanism. Here, the input of the network is a
graph representation embedded with all node features, which en-
ables all instances in the WSI to participate in the training pro-
cess. Therefore, pixel-wise attention heatmap can be visualized
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and interpreted by converting the obtained attention scores of the
instance into percentiles and mapping the normalized scores to
their corresponding spatial location in the original slide. Fig. 6
showed the interpretability heatmaps generated by ABMIL-GCN
model, state-of-the-art method and the pixel-wise annotations for
the corresponding WSI. In Fig. 6, (a;), (a3), (by) and (b,) are the
interpretable heatmaps of WSI and zoomed in view of ROI, which
are obtained by bidirectional ABMIL-GCN and CLAM, respectively.
Fig. 6 (cq) and (cy) are the corresponding ground truth of the WSI
image. In Fig. 6 (cq) and (cy), the area within the blue curve is
the pixel-wise annotation of lymph node metastases, which is pro-
vided by computational pathology group in Medical Center of the
Radboud University. As shown in Fig. 6 (a;)-(cy), it can be con-
cluded that bidirectional ABMIL-GCN model is capable of provid-
ing with more true positive instances than CLAM. The heatmap
obtained using bidirectional ABMIL-GCN could accurately delineate
the boundary between tumor and normal, which have good con-
sistency with human pathology expertise. This is mainly because
graph networks could form effective context-aware relationships
by establishing connections and interaction mechanisms between
the current node and its neighbors. The architecture of graph fea-
ture representation embedding is able to maximize the optimiza-
tion performance of gated attention-based MIL pooling through a
bidirectional information transfer mechanism between adjacent in-
stances, thereby avoiding the appearance of false negative and false
positive instances. Fig. 6 (d{)~(fy) is a positive slide which contains
only a fraction of positive instances. It is predicted as positive and
the ROI can be localized by heatmap in Fig. 6 (dy) and (dy). It
can be seen that the obtained ROI has good consistency with the
ground truth. However, it is predicted to be negative when CLAM is
applied. Therefore, bidirectional ABMIL-GCN can effectively reduce
the false positive rate of WSI prediction by introducing context-
ware information of the slide, which is an essential indicator for
application in realistic scenarios.

However, the proposed ABMIL-GCN also have limitations in rep-
resenting contextual information of whole slides. For instance, the
degree of correlation between a node and surrounding nodes in
the graph is not always the same in practice. While the ABMIL-
GCN model regards the surrounding patches of each patch as equal
contributions, which affects the performance of the model. There-
fore, the next step is to extend our work to add weights of sur-
rounding nodes for each node in the graph to further improve the
performance of the model.
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Fig. 6. Interpretable heatmaps of the WSIs. (a;), (az), (dy) and (d,) are the obtained interpretable heatmaps of WSI and corresponding zoom-in view of them using bidi-
rectional ABMIL-GCN (with flooding regularization). (by), (by), (e;) and (e,) are the obtained interpretable heatmaps of WSI and corresponding zoom-in view of them using
CLAM. (c1) and (f;) are pixel-wise annotation of lymph node metastases in hematoxylin and eosin stained (H&E) whole slide images. (c,) and (f;) are zoomed in view of (c;)

and (f;), respectively.

4. Conclusions

Real-time, objective, and accurate WSI prediction and ROI lo-
calization are of great significance for the diagnosis and treat-
ment of critical illness. The existing weakly supervised learning
methods are mainly based on the assumption of i.i.d, which re-
gard the patches at different positions in the WSI as indepen-
dent regions, resulting in the model unable to effectively utilize
context-aware information to predict WSI tags and locate ROL
Therefore, bidirectional ABMIL-GCN framework is proposed to sim-
ulate context-aware topology structure of the pathological slide
through the combination of graphical feature representation em-
bedding and gated attention-based pooling. The results indicate
that bidirectional ABMIL-GCN could not only achieve higher pre-
diction accuracy with flooding regularization, but also provide
human-interpretable features with localization heatmap. The aver-
age prediction ACC and AUC of the proposed model after flooding
optimization can reach 90.89% and 0.9149 on Camelyon16 dataset,
respectively. The corresponding standard deviation of ABMIL-GCN
model is lower than 0.0033 and 0.0041, which outperform the
state-of-the-art algorithms. Particularly, bidirectional ABMIL-GCN
can greatly reduce the false negative rate of WSI prediction, which
is of great significance for clinical diagnosis. The superior per-
formance of this framework provides a new paradigm for high-
precision prediction and interpretable ROI localization of whole
slide images in computational pathology.
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