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Abstract: Multipartite Einstein-Podolsky-Rosen (EPR) steering has been widely studied, for
realizing safer quantum communication. The steering properties of six spatially separated beams
from the four-wave-mixing process with a spatially structured pump are investigated. Behaviors
of all (1+i)/(i+1)-mode (i=1,2,3) steerings are understandable, if the role of the corresponding
relative interaction strengths are taken into account. Moreover, stronger collective multipartite
steerings including five modes can be obtained in our scheme, which has potential applications in
ultra-secure multiuser quantum networks when the issue of trust is critical. By further discussing
about all monogamy relations, it is noticed that the type-IV monogamy relations, which are
naturally included in our model, are conditionally satisfied. Matrix representation is used to
express the steerings for the first time, which is very useful to understand the monogamy relations
intuitively. Different steering properties obtained in this compact phase-insensitive scheme have
potential applications for different kinds of quantum communication tasks.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum correlation is one of the central concepts in quantum information theory [1], and there
is often a clear hierarchy among different correlations, which includes total correlation, discord,
entanglement, steering, and Bell nonlocality [2]. Einstein-Podolsky-Rosen (EPR) steering [3],
which was first proposed by Schrödinger in 1935 [4] and developed with concrete definition and
criterion by Wiseman in 2007 [5,6], denotes a quantum correlation situated between entanglement
and Bell nonlocality, i.e., EPR steering is stricter than quantum entanglement. It is identified as a
significant physical resource for one-sided device-independent (1SDI) quantum key distribution
[7,8], secure quantum teleportation [9,10], and subchannel discrimination [11], due to its natural
asymmetry, which means that Alice’s ability to steer Bob may not be equal to Bob’s ability
to steer Alice. The situation that only one part can steer the other is called one-way steering
[12,13], which has potential applications in hierarchical quantum communication. The situation
that both parts can steer each other is called two-way steering, which was proved to achieve
quantum teleportation with fidelity greater than 0.67 [10]. Besides bipartite steering, multipartite
steering was also defined [14] and the corresponding criterion was given theoretically [15] and
then verified experimentally [16]. Multipartite steering, which is important for scalable quantum
network, can be generated in many physical systems, such as cavity optomechanical system
[17–19], optical parametric process [20,21], and four-wave mixing (FWM) system [22,23]. The
four-wave mixing (FWM) process can be used to generate squeezed [24] or entangled state of
light [25–27], and can be further generate multipartite entanglement when cascaded FWM is
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applied [27,28]. Genuine tripartite steering, one-way steering, and collective steering based on
asymmetric cascaded FWM structure were discussed [22,29]. Quadripartite steering generated
from the symmetric and asymmetric cascaded FWM structures was demonstrated and four
distinct types of monogamy relations were analyzed accordingly [23]. By adding one more FWM,
pentapartite steering can be obtained and collective multipartite steering can only exist in the
asymmetry structure when optical loss is considered [30]. To achieve better scalability, FWM
process with a spatially structured pump (SSP) [31–34], which can be realized by altering the
angle between two or more pump beams, was adopted to generate quantum correlations among
six [22], ten [35], fourteen [36] output beams experimentally. Besides scalability, using spatially
structured pump can make the experimental setup simpler and compacter. In this paper, we
investigate the steering ability of six spatially separated output beams from a FWM process with
a spatially structured pump [37], and demonstrate the corresponding (1+i)/(i+1)-mode (i=1,2,3)
steerings, collective steerings, and monogamy relations.

2. Physical model and theoretical derivation

We consider a FWM process with a spatially structured pump, as is shown in Fig. 1(a). Two bright
pump beams (pump1 and pump2) and a weak seed beam are focused in the center of the 85Rb
vapor cell with a small tilted angle. Three probe beams (â2, â3, â4) and three conjugate beams
(â1, â5, â6) are simultaneously generated and naturally separated in space. The corresponding
atomic energy level diagram is shown in Fig. 1(b). According to the phase-matching conditions,
single-pump and double-pump FWM processes both happen. Therefore, correlations between â1
and â2, â3 and â5, â1 and â4, â3 and â6, are generated through single-pumped processes, and
correlations between â1 and â3, â4 and â5, â2 and â6, are generated through double-pumped
processes, which can be seen in Fig. 1(c). The interaction Hamiltonian can be written as

Ĥ = iℏ[ε1â†1â†2 + ε2â†1â†3 + ε3â†1â†4 + ε4â†3â†5
+ε5â†3â†6 + ε6â†4â†5 + ε7â†2â†6] + H.c.

(1)

where â†1, . . . , â†6 are the creation operators of six output beams. The first and forth terms
represents the FWM processes of generating â1 and â2, â3 and â5 with a single pump (pump1).
The third and fifth terms represents the generation of â1 and â4, â3 and â6 through single-pump
(pump2) FWM processes. The second, sixth, and seventh terms corresponds to the double-pump
(pump1 and pump2) FWM processes of generating â1 and â3, â4 and â5, â2 and â6 beams.
ε1 · · · ε7 represents the interaction strengths of seven different FWM processes. H.c. means
the Hermitian conjugate. Considering the symmetry of the output beams, we assume that
ε1 = ε4 = G1 (pump1), ε3 = ε5 = G2 (pump2), ε2 = ε6 = ε7 = G3 (double pumps), to make
it convenient to calculate and understand. According to the Hamiltonian shown in Eq. (1), the
Heisenberg equations governing the time evolution of the six output beams (â1, . . . , â6) can be
obtained as,

dâ1
dt
= ε1â†2 + ε2â†3 + ε3â†4

dâ2
dt
= ε1â†1 + ε2â†6

dâ3
dt
= ε2â†1 + ε1â†5 + ε3â†6

dâ4
dt
= ε3â†1 + ε2â†5

dâ5
dt
= ε1â†3 + ε2â†4

dâ6
dt
= ε2â†2 + ε3â†3,

(2)
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where the coefficients in Eq. (2) can be expressed by matrix A,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ε1 ε2 ε3 0 0

ε1 0 0 0 0 ε2

ε2 0 0 0 ε1 ε3

ε3 0 0 0 ε2 0

0 0 ε1 ε2 0 0

0 ε2 ε3 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Based on the definitions of the quadrature amplitude operators X̂i and quadrature phase
operators Ŷi, X̂i = (âi + â†i )/

√
2 and Ŷi = i(â†i − âi)/

√
2, the corresponding Heisenberg equations

can be written in matrix form
dξ
dt
= Gξ, (4)

where ξ = (X̂1, . . . , X̂6, Ŷ1, . . . , Ŷ6)T , and the coefficient matrix G can be expressed by G =
diag[A,−A]. Then Eq. (4) can be solved by diagonalizing G, i.e., G = PGdiagP−1, and the
solution can be expressed by ξ = Sξ(0), where S is a symplectic matrix describing the relationship
between the output and input beams and can be obtained by S = PeGdiagtP−1. Therefore, the
covariance matrix (CM) of the output six modes can be given by [38,39]

σ =
⟨︁
ξξT

⟩︁
= S

⟨︁
ξ(0)ξ(0)T ⟩︁ ST = SST (5)

Based on the CM, the EPR steering properties between the output beams can be quantified
by steering criterion. For a bipartite Gaussian state system ( subsystem A contains nA modes
and subsystem B contains nB modes), the corresponding CM can be reconstructed in the form

σAB =
⎛⎜⎝
A C
CT B

⎞⎟⎠, where submatrices A and B are the reduced state of subsystem A and B,

respectively, and submatrix C corresponds to the correlation between them. The steerability
from subsystem A to subsystem B (A → B) and from subsystem B to subsystem A (B → A ) can
be defined as [40]

GA→B(σAB) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0,−
∑︂

j:ν̄AB/A
j <1

ln(ν̄AB/A
j )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6)

GB→A(σBA) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 0,−
∑︂

j:ν̄AB/B
j <1

ln(ν̄AB/B
j )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (7)

where ν̄AB/A
j (j = 1, . . . , nB) and ν̄AB/B

j (j = 1, . . . , nA) are the symplectic eigenvalues of
σ̄AB/A = B − CTA−1C and σ̄AB/B = A − CTB−1C, respectively. B can be steered by A if
GA→B>0. A can be steered by B if GB→A>0. When (GA→B>0) and (GB→A>0) are both satisfied,
the steering is two-way ( A and B can steer each other), otherwise (GA→B>0,GB→A = 0) or
(GB→A>0,GA→B = 0) represents a one-way steering (only A can steer B, or only B can steer
A). This criterion is a sufficient and necessary condition for testing steering of Gaussian states
with quadrature measurements, but it is not a necessary condition for a non-Gaussian scenario,
although it still validates the presence of steering [23].
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Fig. 1. The FWM process with a spatially structured pump. (a) Generated six beams after
FWM process with structured pump1 (P1) and pump2 (P2). (â2, â3, â4) and (â1, â5, â6) are
the probe and conjugate beams, respectively. (b) The corresponding energy-level diagram of
the double-Λ scheme in the D1 line of 85Rb vapor cell. (c) The output beams from the SSP
based on FWM process. The purple and red balls represent the probe and conjugate beams,
separately. The intersections of the blue, green, and orange lines correspond to pump1 (P1),
pump2 (P2), and double pumps, separately.

3. (1+i)/(i+1)-mode EPR steering

3.1. (1+1)-mode EPR steering

Figure 2(a) gives the time evolution of all (1+1)-mode steerings and shows that t = 0.3 can
make all these steerings considerable. The (1+1)-mode steerings versus the interaction strength
G1 under different parameters are shown in Fig. 2(b) (G2 = 1.2, G3 = 2, t = 0.3) and Fig. 2(c)
(G2 = 2, G3 = 1.2, t = 0.3), respectively.
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Fig. 2. The (1+1)-mode steerings. (a) The steerabilities versus the interaction time t
when G2 = 1.2, G3 = 2. The (1+1)-mode steerings versus G1 for t = 0.3, (b) with
G2 = 1.2, G3 = 2, and (c) with G2 = 2, G3 = 1.2.

It is clear that the (1+1)-mode steerings exist only between probe beams and conjugate
beams, due to the direct interations. According to the symmetry in Fig. 1(c), G1→2 = G3→5,
G1→4 = G3→6, G5→4 = G2→6, and vice verse. As is shown in Fig. 2(b), one-way or two-way
steering sensitively depends on the corresponding interaction strength. Steering between optical
modes â1 and â3 (mainly depend on the double-pump interaction strength G3) is always symmetric
two-way steering, which can be well understood by their symmetry (both frequency and intensity),
and will vanish when G1 is bigger than 1.6, i.e., the critical interaction strength G1 is between
G2 and G3, which means G3 should be stronger enough than the other two to obtain two-way
steerings. For steering between â1 and â2, there only exist one-way steering from â1 to â2 when
2.6<G1<3.2, and two-way asymmetric steering between â1 and â2 will happen when G1>3.2.
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There exist a threshold because steering between â1 and â2 mainly depends on pump 1, which
means G1 should be strong enough. It is also noticed that steering from â1 to â2 is always
stronger than that from â2 to â1, because all pump1, pump2 and double pump can affect mode
â1 but only two of them (pump1 and double pump) can affect â2. For steering between â4 and
â5, it mainly depends on double pump (G3), however, â4 and â5 are also affected by pump2 and
pump1, respectively. Therefore, when G1 is small (<1.2), G4→5>G5→4, and when G1 is bigger
(>1.2), G4→5<G5→4, and when G1>2.1 there only exist one-way steering from â5 to â4. It is
interesting that symmetric two-way steering will happen at the intersection point G1 = 1.2. In
Fig. 2(c), another parameters are chosen to show steerings between â1 and â4 clearly, which can
be understood in the same way, and other steerings are also shown.

Specially, matrix diagram can be used to represent all these one-way and two-way steerings,
as is shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c), with different parameters, respectively. Matrix
element Aij represents the steering from i to j and different colors represent different steerabilities.
Therefore, two-way steerings related to two elements that is symmetric to the diagonal line, while
one-way steerings related to those elements that have no symmetric counterparts. For example,
in Fig. 3(a), three two-way steerings are demonstrated, however, only steering between â1 and
â3 is symmetric two-way (same color). This matrix representation can help us to demonstrate
the steerings more intuitively. Furthermore, the satisfied type-I monogamy relations can also
be found from these matrix representations, i.e., when â1 can be steered by â3, it cannot be
steered by other modes simultaneously, . . .. . ., etc. Note that all the (1+1)-mode steerings can
be reasonably explained by the relative interaction strengths, i.e., the direct interaction that
dominate the (1+1)-mode steering should be strong enough compared with other interactions, to
keep a considerable steerability. Moreover, the asymmetric two-way steering results from the
asymmetric intensity. For example, the intensity of â1 (â3) is the strongest, therefore the steering
from it to other mode is stronger than that from other mode to it.
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Fig. 3. Matrix representation of (1+1)-mode steerings. (a) G1 = 1, G2 = 1.2, G3 = 2. (b)
G1 = 3.5, G2 = 1.2, G3 = 2. (c) G1 = 1, G2 = 2, G3 = 1.2.

3.2. (1+2)/(2+1)-mode EPR steering

The (1+2)/(2+1)-mode steerings, which means the steered part or steering part contains two modes,
are shown in Fig. 4. t = 0.3 is chosen for consistency, according to Fig. 4(a). G34→5 = G16→2,
G23→6 = G15→4, G24→1 = G56→3, G23→1 = G15→3, G34→1 = G16→3, and vice verse, due to
the symmetry in Fig. 1(c). As is shown in Fig. 4(b), steering between modes â2â3 and mode
â6 will change from two-way to one-way when G1>2.1, and steerings will decrease when G1
increase because they are mainly depend on the interaction strength G2 and G3. For steering
between modes â2â3 and mode â1 is always two-way, when G1 is small (<0.8), G1→23>G23→1,
and when G1 is bigger (>0.8), G1→23<G23→1. It is interesting that symmetric two-way steering
will happen at the intersection point G1 = 0.8, and both steerings will increase when G1 is further
increasing because they are mainly depend on G1 and G3. Steering between modes â3â4 and
mode â5 is always two-way due to strong G3. Steering between modes â3â4 and mode â1 is
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two-way and will vanish when G1>1.8 due to smaller relative strength of G2. Steering between
modes â2â4 and mode â1 has a smaller threshold compare with that between â2 and â1 (shown in
Fig. 2(b)) due to the contribution of pump2. Results for bigger relative strength of G2 are shown
in Fig. 4(c). In Fig. 4(c), Steering between modes â2â4 and mode â1 is always two-way due to
stronger G2. Steering between modes â3â4 and mode â5 will change from one-way to two-way
G1>2.5, due to smaller relative strength of G3 and initial weak G1. Steering between modes
â3â4 and mode â1 will change from two-way to one-way when G1>1.9 with a intersection of
symmetric two-way steering at G1 = 1.5. This is understandable: when G1 is further increased,
steering between â1 and â3 vanishes due to smaller relative G3 and steering from â1 to â4 is
stronger than that from â4 to â1 due to strong intensity of â1. Fig. 4(d) and Fig. 4(e) are the
matrix representations under different parameters, which contain all possible (1+2)/(2+1) modes.
From the matrix representations, it is found that the type-II monogamy relations also can be
satisfied, for example, when â5 can be steered by â2â3, it cannot be steered by â4 simultaneously;
when â1 can be steered by â2â4, it cannot be steered by â3 simultaneously; . . .. . .. Note that the
(1+2)/(2+1)-mode steering depends on the superimposed effect of the corresponding (1+1)-mode
steerings and is still sensitive to the relative interaction strength.
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Fig. 4. Results of the (1 + 2)/(2 + 1)-mode steerings. (a) Time evolution, with G1 =
2, G3 = 2, G2 = 1.2. (b) The steerings versus G1, G2 = 1.2, G3 = 2. (c) The steerings
versus G1, G2 = 2, G3 = 1.2. In subgraph (b) and (c), the solid line and dashed line of
the same color correspond to a pair of counterparts, for example, the solid and dashed
blue lines correspond to G23→1 and G1→23, respectively. (d) Matrix representation with
G2 = 1.2, G3 = 2, G1 = 3. (e) Matrix representation with G2 = 2, G3 = 1.2, G1 = 3.

3.3. (1+3)/(3+1)-mode EPR steering

The (1+3)/(3+1)-mode steerings are shown in Fig. 5. t=0.3 is still chosen for consistency
based on the time evolution diagram Fig. 5(a), and it is found that the steerabilities are robust
and stronger when the steering part or the steered part contain three modes, because more
correlations contribute to the steerings. Still we have G234→1 = G156→3, G234→5 = G156→2,
G234→6 = G156→4, and vice verse, due to the symmetry in Fig. 1(c). Specially, all (1+3)/(3+1)-
mode steerings are asymmetric two-way, as is shown in Fig. 5(b) and Fig. 5(c). It means the
more the steering or steered modes, the less dependence on the relative strength. However, bigger
relative strength of G2 leads to stronger steering between modes â2â3â4 and mode â1, compared
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with that between â2â3â4 and â5. With the increase of G1, G1→234 decrease, while G234→1 and
G234→5 finally increase. Generally, steering from one-mode to multi-modes is smaller than that
of multi-mode to one-mode, for example, G234→1>G1→234 (The solid line is higher than the
dashed line of the same color). It is clearly shown from the matrix representation in Fig. 5(d) and
Fig. 5(e), all (1+3)/(3+1)-mode steerings are asymmetric two-way steerings. Moreover, from
the matrix representations, it is found that the type-III monogamy relations can be satisfied, for
example, the steerability G156→2 is bigger than the sum steerabilities G1→2, G5→2, and G6→2;
the steerability of G2→156 is bigger than the sum of steerabilities G2→1, G2→5, and G2→6; . . .. . ..
Note that the (1+3)/(3+1)-mode steering is not so sensitive to the relative interaction strength
any more, because the indirect interactions work and then the interaction strengths G1, G2 and
G3 are all included. By the way, when more modes (>3) are considered, the joint steering of
more modes is always bigger than that of less modes.
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Fig. 5. The (1+3)/(3+1)-mode steerings. (a) The time evolution diagram with G1 = 2, G3 =
2, G2 = 1.2. (b) The steerabilities versus G1, where G2 = 1.2, G3 = 2. (c) The steerabilities
versus G1, where G2 = 2, G3 = 1.2. In subgraph (b) and (c), the solid line and dashed line of
the same color correspond to a pair of counterparts, for example, the solid and dashed blue
lines correspond to G234→1 and G1→234, respectively. (d) Matrix representation diagram
when G1 = 3, G2 = 1.2, G3 = 2; (e) G1 = 3, G2 = 2, G3 = 1.2.

4. Collective multipartite EPR steering

For a quantum system consisting of n parties, if a given party i can be steered by all the remaining
n − 1 parties, but not by any n − 2 parties, it is called collective multipartite steering. It means
that the group of n − 1 parties must collaborate after performing local measurements on each
individual system in order to extract the information of party i, which has potential application to
achieve ultra-secure n-party quantum secret sharing [30,41]. And this kind of special quantum
states may provide a solution to the challenges of secure quantum communication network.

Considering a n-partite case that has one steered mode (B) and n − 1 steering modes
(A1, A2, . . . , An−1), the criterion of the collective multipartite steering can be simplified as [30]

GA′→B = 0, nA′ = n − 2

GA1A2...An−1→B >0, nA = n − 1
(8)
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Here A′ includes all C1
n−1 possibilities of one less mode than A with n−1 mode. It is noticed that

only steering party with n−1 modes can steer mode B but n−2 modes cannot. For six output modes
in our model, there exist collective pentapartite steering at most and all its possibilities are shown
in STable 1, among which there are three conditions of collective steerings according to three
columns, i.e., the two structures in each column have the same steerability, due to the symmetry. It
is noticed that mode â1 and â3 cannot be included together in the collective multipartite steerings,
which is understandable: if we consider them both, on the one hand, perfect symmetric structure
will make it hard to generate collective steering [30]; on the other hand, strong correlations will
make steerability of n-2 modes too strong to generate collective steering. Collective pentapartite
EPR steering including modes (â1â2â4â5â6) and (â2â3â4â5â6) based on the above three conditions
are shown in Fig. 6. It is clear in Fig. 6(a), for pentapartite modes (â1â2â4â5â6), if G3>4.3 and
G1 = 1, G2 = 3.2 is chosen, collective steering that only G2456→1 can happen and steerings of
less steering modes vanish, i.e., G2456→1>0,G256→1 = G456→1 = G246→1 = G245→1 = 0. For
pentapartite modes (â2â3â4â5â6), if the steered mode is â2 and G1 = 4, G2 = 2 is chosen, the
collective steering (G3456→2>0,G345→2 = G356→2 = G346→2 = G456→2 = 0) will happen when
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Fig. 6. Parameter regions of the collective pentapartite steerings including modes
(â1â2â4â5â6) and (â2â3â4â5â6). The steered mode in (a)/(a′)/(a′′), (b)/(b′)/(b′′), and
(c)/(c′)/(c′′) are â1, â2, and â4, respectively. The corresponding parameters are: (a)
G1 = 1, G2 = 3.2; (b) G1 = 4, G2 = 2; (c) G1 = 1.5, G2 = 4. (a′)G1 = 1,(a′′)G2 =
3.2.(b′)G1 = 4;(b′′)G2 = 2.(c′)G1 = 1.5; (c′′)G2 = 4.
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2.4<G3<3.0, as is shown in Fig. 6(b). While if the steered mode is a4 and G1 = 1.5, G2 = 4 is
chosen, the collective steering (G2356→4>0,G235→2 = G236→2 = G356→2 = G256→2 = 0) will
happen when 2.45<G3<3.42, as is shown in Fig. 6(c). The parameter range that the collective
pentapartite steerings can exist are shown in Fig. 6(a′)(b′)(c′) (collective pentapartite steering
versus both G2 and G3 when G1 is fixed) and Fig. 6(a′′)(b′′)(c′′) (collective pentapartite steering
versus both G1 and G3 when G2 is fixed). It is worth mentioning that results of Fig. 6(a)/(b)/(c)
are included in Fig. 6(a′)/(b′)/(c′) and Fig. 6(a′′)/(b′′)/(c′′). For example, in Fig. 6(a′), the
parameter range of G2 and G3 of the collective pentapartite steering that only G2456→1 can
happen, is given by the colorful zone, which includes the special condition shown in Fig. 6((a)
(G1 = 1, G2 = 3.2, G3>4.3). Moreover, as is shown in Fig. 6(a)(a′)(a′′), for collective steering
that only G2456→1 can happen, the parameter G3 should be the strongest to make the original
weaker indirect correlation between â5, â6 and â1 strong enough. In the same way, we can
also understand that G1 and G2 should be the strongest parameter in Fig. 6(b)(b′)(b′′) and
Fig. 6(c)(c′)(c′′), respectively. Trying to make initial weak correlations strong (make sure
steerability of n-1 modes is strong enough) and initial strong correlations weak (make sure
steerabilities of n-2 modes are weak to zero) help to build conditions for collective steering. From
six parameter regions, it is also noticed that steerabilities that larger than ln(e/2) (0.31) can be
obtained under proper parameter conditions, therefore it can meets the condition of 1SDI QSS
with nonzero key rates [42]. These results mean that one can choose five modes in the output
six modes to build a collective pentapartite EPR steering, which includes more modes and have
compacter setup, stronger steerabilities, compared with other works.

Table 1. All possible collective steerings
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5. Monogamy relations

Besides the collective steering, another key point of multipartite steering is the so -called
monogamy relations, which is important for understanding how the steerings can be distributed
among many parties and has been widely studied both theoretically and experimentally.

There are four types of monogamy relations that have been developed [23,43], for Gaussian
states with Gaussian measurements. Considering the six output modes in our model, the four
types of monogamy relations are shown in Table 2. As is mentioned in section 3.1, 3.2, and 3.3,
all the type-I, type-II, and type-III monogamy relations can be satisfied in our model, which
can be found in the corresponding matrix representations. For our six-mode-system, the type-I
and type-II monogamy relations mean that the steering parties cannot steer the steered party
simultaneously, where the type-I monogamy relations correspond to the condition that all the
steering and steered parties include one mode, and the type-II monogamy relations correspond to
the condition that the steered party includes one mode and the steering parties include more than
one modes, as are shown in the first and second row of Table 2. While the type-III monogamy
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relations mean that the steerability from many modes to one mode is bigger than the sum of
that from corresponding one mode to one mode, which can be found in the third row of Table 2.
However, the type-IV monogamy relations is about steering from many modes to many modes,
and steerability from many modes to many modes is bigger than the sum of steerabilities from
corresponding many modes to one mode, or from one mode to many modes.

Table 2. Monogamy Relations

Since the type-IV monogamy relations have not been mentioned in the above sections, here we
focus on them and mainly discuss about the situation that the steering part and steered part both
have three modes, which is naturally included in our model. Considering a quadrapartition system
(nA + nB + nC + nD)-mode system ABCD, the type-IV monogamy relation can be expressed
as GD→(ABC) − GD→A − GD→B − GD→C ≥ 0, or G(ABC)→D − GA→D − GB→D − GC→D ≥ 0,
with nA = 1, nB = 1, nC = 1; nD = 3. The results of the type-IV monogamy relations, i.e.,
G156→234 − G1→234 − G5→234 − G6→234, and G234→156 − G234→1 − G234→5 − G234→6, versus
parameters, are shown in Fig. 7(a) and (c) and Fig. 7(b) and (d), respectively. The colorful zones
in Fig. 7 correspond to the parameter range that the type-IV monogamy relations can be satisfied,
i.e., the type-IV monogamy relations are true or not depend on the parameter conditions, and
the lifting of the type-IV monogamy constraint can happen in the grey zone in Fig. 7. It is also
noticed that, the bigger the interaction parameter G1, G2, G3, the bigger the total correlation, the
stronger the residual Gaussian steering, which lead to the satisfaction of the type-IV monogamy
constraints. From other point of view, the conditional type-IV monogamy relations may provide



Research Article Vol. 31, No. 7 / 27 Mar 2023 / Optics Express 11785

the possibility to control the distribution of the steering and may have potential applications in
building controllable ultra-secure quantum network.
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Fig. 7. Parameter regions of type-IV monogamy relation, i.e., G156→234 − G5→234 −
G1→234 − G6→234 versus parameters for (a) G1 = 1.2 and (c) G2 = 2. G234→156 −
G234→1 − G234→5 − G234→6 versus parameters for (b) G1 = 1.2 and (d) G2 = 2

6. Conclusion

The steering properties of the six output beams that come from the FWM process with SSP
have been studied in detail, including the (1+i)/(i+1)-mode steerings (i=1,2,3), the possible
collective pentapertite steerings, and the interesting monogamy relations. It is found that the
(1+i)/(i+1) steerings depend on the relative intensity of the related beams and the symmetry of
the system, and bigger i will lead to less parameter dependence. Moreover, collective pentapartite
EPR steerings can be obtained with a very compact setup, which are the central resource for
ultra-secure hierarchical communication in quantum networks with many users where the issue
of trust is of importance. In addition, four types of the monogamy relations are discussed, and
only the type-IV monogamy ralations are conditional, which provide the possibility to build
controllable ultra-secure quantum network. All the results mean that this FWM process with
SSP is a promising platform to demonstrate different kinds of EPR steerings and to explore the
corresponding valuable applications. By the way, matrix representation is used to express the
steerings for the first time, which is not only help to demonstrate all the steerings intuitively, but
also very useful in understanding the monogamy relations.
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