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A B S T R A C T   

Background and objective: Pathological whole slide image (WSI) prediction and region of interest (ROI) locali-
zation are important issues in computer-aided diagnosis and postoperative analysis in clinical applications. 
Existing computer-aided methods for predicting WSI are mainly based on multiple instance learning (MIL) and its 
variants. However, most of the methods are based on instance independence and identical distribution 
assumption and performed at a single scale, which not fully exploit the hierarchical multiscale heterogeneous 
information contained in WSI. 
Methods: Heterogeneous Subgraph-Guided Multiscale Graph Attention Fusion Network (HSG-MGAF Net) is 
proposed to build the topology of critical image patches at two scales for adaptive WSI prediction and lesion 
localization. The HSG-MGAF Net simulates the hierarchical heterogeneous information of WSI through graph 
and hypergraph at two scales, respectively. This framework not only fully exploits the low-order and potential 
high-order correlations of image patches at each scale, but also leverages the heterogeneous information of the 
two scales for adaptive WSI prediction. 
Results: We validate the superiority of the proposed method on the CAMELYON16 and the TCGA- NSCLC, and the 
results show that HSG-MGAF Net outperforms the state-of-the-art method on both datasets. The average ACC, 
AUC and F1 score of HSG-MGAF Net can reach 92.7 %/0.951/0.892 and 92.2 %/0.957/0.919, respectively. The 
obtained heatmaps can also localize the positive regions more accurately, which have great consistency with the 
pixel-level labels. 
Conclusions: The results demonstrate that HSG-MGAF Net outperforms existing weakly supervised learning 
methods by introducing critical heterogeneous information between the two scales. This approach paves the way 
for further research on light weighted heterogeneous graph-based WSI prediction and ROI localization.   

1. Introduction 

Pathology whole slide images (WSI) is considered to be the "gold 
standard" for confirming the presence of cancer [1]. To date, the path-
ological diagnostic conclusions are obtained based primarily on manual 
inspections of specialists. This process is not only labor-intensive and 
time-consuming, but also relies seriously on subjective interpretation, 
which is a challenging task for precision medicine [2–4]. Therefore, 

developing artificial intelligence systems for automatically diagnosing 
and analyzing whole slide images are the prospective trend in compu-
tational pathology [5–8]. However, most WSIs have hundreds of mil-
lions of pixels (e.g. the typical size is 40,000 × 30,000), which lacks of 
pixel-wise annotations [9,10]. Thus, it is of great significance to develop 
an effective weakly-supervised learning method for WSI prediction and 
ROI localization. 

Currently, the existing computer-aided methods for predicting WSI 
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are mainly based on multiple instance learning (MIL) [11,12] and its 
variants. In MIL algorithm, it treats WSI as a bag consisting a multiple of 
cropped patches called instances [13]. The slide-level label prediction is 
obtained by aggregating the features of partial instance in the WSI [14]. 
However, these approaches have the following drawbacks: (1) They do 
not reasonably consider the contextual information existing between 
instances in WSI based on the instance independence and identical 
distribution (i.i.d) assumption. (2) Most of the MIL-based methods are 
based on single-scale and lack consideration of cross-scale contextual 
heterogeneous information of WSI. (3) The massive computational cost 
in processing the whole slide images. In real scenarios, whole slide im-
ages can provide multi-scale heterogeneous information on macroscopic 
and microscopic features of tissue phenotypes, which plays an important 
role in pathological diagnosis and analysis. The heterogeneous features 
between different magnifications are shown in Fig. 1. 

1.1. Related works 

In the field of whole slide image prediction and ROI localization, the 
mainstream methods are multi-instance learning and its variants. These 
methods generally divide pathology slides into patches named instance, 
and extract the feature embedding of each patch for further processing. 
The existing MIL-based deep learning frameworks mainly include 
CNN+MIL [15–18] and GCN+MIL architectures [19–22]. 

1.1.1. CNN-based mil approaches 
Many CNN+MIL frameworks are based on the hypothesis that in-

stances follow an independent and identical distributions (i.i.d) sup-
plemented by instance-level constraints. For instance, top-k instances 
are selected as an effective restriction to assist the CNN+MIL model in 
highlighting ROIs and making slide-level label predictions [23–25]. 
However, it ignores the fine-grained spatial relationships which are 
implied between instances in the slide. Only a subset of instances in each 
slide participates in the training process, which will result in perfor-
mance degradation. Therefore, Transformer-based MIL architectures 
[26–28], multi-scale MIL [29–31], and other features representation 
[12,32,33] methods are proposed to exploit contextual information 
within the slide for further prediction. 

Transformer-based MIL Architectures. To fully consider the global 
correlation between instances in WSI, transformer-based MIL methods 
[26–28,34] are surged as a promising branch to capture contextual in-
formation of the instance in the slide. For instance, Huang et al. [26] 
proposed SeTranSurv for survival prediction, which uses Transformer to 
adaptively aggregate the patch features in the slide based on their spatial 
information and correlations. In 2021, Shao et al. [34] design a Trans-
MIL architecture that breaks the i.i.d. assumptions to establish 
morphological and spatial feature correlations among all instances in a 
slide. In practice, these approaches can exploit the context-aware in-
formation of slides to improve prediction performance to a certain 

extent. Unfortunately, not all instances in the slide are related to each 
other. Computing the attention scores for these irrelevant instances not 
only leads to limited performance improvements, but also places un-
desirable burden on computing devices. 

Multi-Scale MIL Architectures. Inspired by the diagnostic work-
flow of pathologists, the utilization of multiscale features has been 
proved beneficial in MIL-based approaches [29–31,35]. For instance, Li 
et al. [35] proposed a DSMIL based on a dual-stream architecture, which 
adopts a pyramid fusion mechanism for concatenate features of two 
scales and combines trainable distance measurements to improve clas-
sification and localization accuracy. To reduce the computational cost of 
MIL methods based on multiple scales, Thandiackal et al. [30] proposed 
a ZoomMIL to obtain the slide-level representation by aggregating 
contextual information of the pathological slide at multiple magnifica-
tions through a multi-scale local zooming strategy. However, these 
multi-scale MIL methods only concatenate aggregated features from two 
scales for final prediction. They do not consider the heterogeneous in-
formation implicited at both scales and the contribution of each scale. 

Feature representation methods. Some features representation 
approaches based on MIL have been applied for WSI prediction [12,23, 
32,33]. Campanella et al. [23] proposed MIL-RNN to aggregate features 
of selected top-ranked patches to obtain sliding-level predictions more 
effectively. However, only using top-k instances for feature representa-
tion has large bias and also leads to poor interpretability. In 2022, Zhang 
et al. [33] proposed DTFD-MIL to effectively utilize the intrinsic features 
of instances by dividing each slide into multiple pseudo-bags. However, 
the performance of these models is also limited as they do not fully 
consider and exploit the global context-aware information of slide. 

Overall, CNN+MIL frameworks, either based on multi-scale archi-
tecture or single-scale with versatile instance-level constraints, are 
insufficient to describe the refined feature correlations of instances in 
the slides, thus affecting prediction accuracy and interpretability. 
Therefore, GCN+MIL is proposed to leverage the graph to simulate 
context-aware topology of pathological slides to obtain a global repre-
sentation. The instances in graph could be cell nuclei or patches. 

1.1.2. GCN-based mil approaches 
Cell-based graphs. Cell-based graphs [36–39] are proposed to 

simulate the contextual topology of whole slide images, which use cells 
as graph nodes and construct edges based on the Euclidean distance of 
the nodes. Here, the cell features and edge connections are fed into GCN 
to perform WSI classification. The representative studies are as follows: 
Sureka et al. [39] exploited a spatial hop counts of cell nuclei to build 
cell graph and utilized an attention-based graph network to learn 
contextual information between cells. Lu et al. [37] use a graph repre-
sentation to describe cell-level context-aware topology of pathology 
slides. However, these methods are based on the precise localization of 
the cell nucleus. Each cell can only establish relationships with sur-
rounding cells, which lacks the expression of long-distance dependence 
among cells. Besides, the performance of this framework is limited 
because the properties of heterogeneous cell nuclei cannot be fully 
expressed. 

Patch-based graphs. Compared with cell-based graphs, the whole 
slide image can be cropped to multiple of patches. Each patch in the slide 
is treated as a node to form a patch-based graph based on its neighbors 
[21,28,40,41]. For instance, Chen et al. [40] construct a Patch-GCN 
framework to simulate spatial context-aware information of WSI for 
survival outcome prediction. The results showed that there is a signifi-
cant improvement in performance compared to the CNN+MIL archi-
tecture. To increase flexibility and reduce computational pressure, Liu 
et al. [41] used sparsely sampled patches of the slide to construct a 
dynamic graph network, which not only adaptively adjusts the potential 
correlation between patches but also appropriately represents pathology 
slides for survival prediction. 

In clinical scenarios, the relations between instances in slide are 
more complex and cannot be effectively represented by the GCN+MIL 

Fig. 1. The representation of WSI pyramid. The patches at lower resolution and 
the patches at higher resolution are treated as heterogeneous node represen-
tations for a slide (right). 
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framework alone. In practice, low-order, complex high-order correla-
tions and multi-scale heterogeneous information were coexisted in the 
instances of a WSI. The accurate representation and description of these 
information can provide fine-grained diagnostic information, which can 
further improve the predictive performance of the model. In spired by 
the workflow of pathologist, Wang et al. [42] proposed a H2-MIL to learn 
hierarchical representation from a heterogeneous graph with different 
resolutions in WSI. However, this type of heterogeneity is based on all 
instances at multiple scales for a specific slide, which can lead to a huge 
computation burden. Besides, most of the existing MIL methods that 
utilize multi-scale features are based on concatenation operation, which 
only stacks the obtained features of multiple scales with equal weight, is 
insufficient in considering the contribution of each scale. To solve the 
above challenges, Heterogeneous Subgraph-Guided Multiscale Graph 
Attention Fusion Network (HSG-MGAF Net) is proposed to build the 
topology of top ranked image patches at multiple scales for adaptive WSI 
prediction and lesion localization. This framework not only exploits the 
low-order and potential high-order correlations of image patches at each 
scale through graphs and hypergraphs, but also hierarchically leverages 
the most significant heterogeneous information at both scales for 
adaptive WSI prediction. Meanwhile, Self-Supervised contrastive 
learning is applied across the two scales to maximize the consistency of 
predictions on both scales. The results show that HSG-MGAF Net out-
performs the state-of-the-art (SOTA) methods on both datasets. 

1.2. Contributions 

The main contributions of our framework are as follows: 

• Inspired by the workflow of pathologists, a HSG-MGAF Net is pro-
posed to adaptively establish low-order and potential high-order 
spatial relationships of patches at two scales for interpretable pre-
diction of WSI using weak labels.  

• Top-2k heterogeneous subgraph (Top-2k HSG) is proposed to guide 
multi-scale graph network for adaptive slide prediction and ROI 
localization. This method exploits the heterogeneous topological 
relationships of image patches at two scales without introducing too 
much computational burden.  

• Self-supervised contrastive learning constraint is introduced across 
the two scales of HSG- MGAF Net to maximize the consistency of 
predictions at both scales in the optimization process. 

• Interpretable heatmaps with complementary features can be ob-
tained by using heterogeneous relationships of the top ranked 
patches at two scales. 

2. Methods 

2.1. MIL formulation 

In deep learning, multiple-instance learning (MIL) is a form of 
weakly supervised learning paradigm for addressing weakly annotated 
data. Specifically, instead of receiving a set of instances which are 
individually annotated, the learner receives a set of labeled bags, each 
consisting of multiple instances. Thus, MIL is applicable for processing 
gigapixel whole slide images, where each WSI is considered as a bag and 
the image patches within the bag are regarded as instances. In binary 
classification scenarios, a bag is labeled negative if all the instances in it 
are negative. While a bag is labeled positive if there is at least one 
instance in it which is positive. 

2.2. Data preprocessing 

Given a WSI dataset D = {X, Y} where X and Y denote the input 
whole slide image and the assigned slide-level label. In our case, Y ∈ {0, 
1}. Firstly, automatic background removal is performed by Otsu’s 
binarization in HSV space at scale 20 × and scale 40 × , respectively. 

Then, the foreground of slide is cropped into non-overlapping patches of 
fixed size 256 × 256 at both scales. Therefore, the slide X can be 
represent as Xs = {xj}

Ps
j=1. Where xj denote the jth instance in slide X at 

scale s. Here, each instance xj implies a binary pseudo-label yj, which is 
not defined exactly. Ps is the number of instances in for scale s(s=1,2), 
which varies widely for each slide. Meanwhile, the x-y coordinates of 
these instances are preserved in the process. According to MIL 
assumption, the relationship between yj and Y is given by 

Y =

⎧
⎨

⎩

0, if
∑

j
yj = 0,

1, otherwise.
(1)  

2.3. Graph and hypergraph construction 

Inspired by the workflow of pathologists, a dual-stream architecture 
is proposed that uses graph and hypergraph networks to formulate low- 
order and complex high-order correlations of the slides at scale 20 × and 
40 × , respectively. Fig. 2(a) shows the graph and hypergraph con-
struction process of the whole slide images. Here, the graph network is 
used to formulate the spatial correlation between patches in the slide at 
low magnification, which attempts to capture the features of nodes in 
the local neighborhood. While the hypergraph network is applied to 
simulate the high-order correlations of patches in the slide at high 
magnification, which allows the model to obtain the feature correlations 
across the whole slide. Therefore, HSG-MGAF Net can more compre-
hensively depict the contextual topology of patches in the slide through 
multi-scale architectures. In the framework, the pre-trained ResNet50 is 
applied for feature extraction at scale 20 × and 40 × , respectively. Thus, 
the feature representations of the slide X at scales 20 × and 40 × can be 
denoted as Fs = {fd

j }
Ps

j=1
(fd

j ∈ R1×1024, s = 1,2). 

Graph Construction. In scale 20 × , graph is constructed based on 
the instances which are treated as nodes in the graph. The K-nearest 
neighbor (K-NN) algorithm is used to construct the spatial connections 
of each node. That is, the algorithm simulates a 3 × 3 receptive field by 
establishing spatial connections between each image patch and the 
surrounding 8 image patches. Therefore, the WSI is represented as G =
(F1,A) based on the concept of the graph. Where A is the adjacency 
matrix of input slide X at scale 20 × in branch 1, which can be expressed 
as: 

Aj,j
′
=

{
1, if xjis adjacent to xj′ ,

0, otherwise.
(2)  

Here, j, j′ ∈ {1, 2, ⋅⋅⋅, P1}. 
Hypergraph Construction. Likewise, hypergraph is constructed 

based on the patches at scale 40 × , which are also treated as nodes/ 
hypernodes in the hypergraph. With the feature representation of 
hypernodes F2, the hypergraph G̃ is constructed by connecting highly 
correlated hyper nodes using hyper edges according to their Euclidean 
distance in latent space. This correlation is denoted by incidence matrix 
H. Here, three combinations of hyper edges are included in the hyper-
graph. These hyper edges could connect 2, 3 and 4 hypernodes in the 
iteration. Therefore, hypergraph provides an effective way to capture 
higher-order dependencies between image patches in a slide. When the 
hyperedge is incident with hyper nodes, the corresponding element of H 
can be given by hv,e=1, otherwise 0. Note that, the nodes in graph (in 
branch 1) and the corresponding nodes in hypergraph are heterogeneous 
to each other. 

Therefore, the hypergraph of the slide is represented as G̃ = (F2,H), 
H is the incidence matrix of input slide X at scale 40 × in branch 2. Each 
entry of H can be expressed as: 
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hv,e =
{ 1, if v ∈ e

0, if v ∕∈ e
(3)  

Here, v and e denote the hyper node and hyper edge in the constructed 
hypergraph in branch 2, respectively. 

2.4. The framework of HSG-MGAF Net 

Fig. 2(b) is the schematic diagram of HSG-MGAF Net. As shown in 
Fig. 2(b), the framework mainly consists of two branches. The frame-
work in branch 1 is a gated graph attention network, which is proposed 
to formulate low-order correlations of image patches at low magnifica-
tion based on attention mechanism. While the framework in branch 2 is 
a gated hypergraph convolutional network, which is applied to exploit 
the potential high-order correlations of fine-grained image patches at 
higher magnifications. In each branch, it includes two GAT/hypergraph 
convolutional layers, a gated fusion layer and an attention-based pool-
ing module. Afterwards, a multi-scale adaptive fusion module is applied 
to fuse the obtained features of the two branches according to their 
weights. Note that, the weights are obtained by slide-level representa-
tion of a specific scale and the aggregate feature of Top2k heterogeneous 
subgraph (Top2k-HSG). Here, Top2k heterogeneous subgraph across the 
two scales is also obtained by attention-based pooling module in each 
branch during the iterative process, which contains the critical features 
of the WSI at these scales. For Top2k-HSG, its features are extracted and 
aggregated by the HGAT network and multi-scale pooling operation, 
respectively. Therefore, it could fully utilize the multi-scale context- 
aware heterogeneous information of the highly ranked instances to 
further improve the performance of the slide prediction and ROI 
localization. 

2.4.1. Gated graph attention network 
As shown in Fig. 2(b), the gated graph attention network consists of 

two graph convolutional layers, a gated fusion layer, and an attention- 
based pooling module. In this branch, whole slide image prediction 
can be treated as a graph classification problem after slide-level graph 
construction. 

For graph G, the instance xj is transformed into a d-dimensional 

feature vector by a truncated ResNet50 and denoted as hj ∈ R1×d. 
Therefore, the graph mapping function from l-th to (l + 1)-th layer can 
be represented as: F(l)= {h(l)

1 ,⋯h(l)
j ,⋯h(l)

Ps
} ∈ RP1×din → F(l+1) = {h(l+1)

1 ,⋯ 

h(l+1)
j ,⋯h(l+1)

Ps
} ∈ RP1×dout . Here, {din → dout} are {1024 → 512} and {512 

→ 256} for the two graph convolutional layers. 
To enhance the expressive ability of node features, the shared linear 

transformation parameterized by the weight matrix w ∈ Rdout×din trans-
forms the features of the input nodes into higher-level features. Mean-
while, self-attention mechanism is used to calculate the attention 
coefficient ej,j′ between node j and its neighbor nodes xj′ ∈ Ne(xj). 

ej,j′ = aatt
(
whj,whj′

)
(4)  

ej,j′ indicates the contribution for the feature of node xj′ to node xj. 
Then, ej,j′ is normalized to obtain attention score of each neighbor to 

better describe the node contributions: 

aj,j′ = softmax
(
ej,j′
)

(5) 

The attention scores of the graph node xj and its 8-neighbor nodes are 
calculated as follows: 

aj,j′ =
exp
{
LeakyReLU

(
(aatt)T[whj ‖ whj′

])}

∑
x
j′∈Ne(xj)

exp
{
LeakyReLU

(
(aatt)T[whj ‖ whj′

])} (6)  

Where aatt ∈ R1×2dout denote a weight vector. T represents the matrix 
transpose operation, and ‖ is the concatenation operation. The 
normalized coefficient aj,j′ is then used to update feature representation 
of node xj: 

hl+1
j = σ

⎛

⎜
⎝
∑

x
j′∈Ne(xj)

aj,j′wh
l
j′

⎞

⎟
⎠ (7)  

Where σ( ⋅ ) denote a activation function. 
In the framework, each graph convolution layer is followed by layer 

normalization and dropout operation to improve generalization ability, 
accelerate convergence and prevent the gradient over-smoothing issues 
of the model. 

Fig. 2. HSG-MGAF Net. (a) Preprocessing of WSI and construction of graph and hypergraph at two scales. (b) The block diagram of HSG-MGAF Net.  
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2.4.2. Gated hypergraph convolution network 
Gated hypergraph convolution network is mainly composed of two 

hypergraph convolution layers [43], a gated fusion layer, and an 
attention-based pooling module. Compared with graph architecture, 
hypergraph network is more flexible and can better describe potential 
high-order relationships between the nodes. Therefore, a gated hyper-
graph convolutional network is constructed at 40 × to depict the cor-
relations between the fine-grained features of the image patches. 

We learn a hypergraph mapping function for the slide: G̃ = (F2,

H):(F2)
(l)

∈ RP2×din
′
→(F2)

(l+1)
∈ RP2×dout

′
. (F2)l and (F2)(l + 1) indicate the 

node feature representation in the lth layer and (l + 1) layer, respec-
tively. Here, {din′ → dout′} are {1024 → 512} and {512 → 256} for the 
two hypergraph convolutional layers. 

Here, we use hypergraph Laplacian operator to realize hypergraph 
convolution, which can be defined as: 

H̃ = D− 1/2
v HWD− 1

e H
TD− 1/2

v (8)  

H̃ denotes hypergraph laplacian operator. H ∈ RP2×E is the incidence 
matrix of the hypergraph G̃, and T represents the transpose operation. 
Dv ∈ RP2×P2 and De ∈ RE×E are degree matrices of vertices and hyper-
edges, respectively. W ∈ RE×E is the weight matrix of hyperedges. 
Therefore, the message passing process of hypergraph convolution layer 
can be expressed as: 

F(l+1) = σ
(
H̃
(
F2)(l)P(l)

)
(9)  

Where σ( ⋅ ) is the LeakyReLu function, and P(l) denotes the weight 
matrix of the first two layers. 

2.4.3. Gated fusion layer 
Node representation evolves on the graph as the number of layers’ 

increases. Therefore, it is necessary to fuse low-level features and high- 
level semantic features in these layers. As shown in Fig. 3, Gated Fusion 
Layer (GFL) is proposed to selectively fuse the features from former layer 
and semantic layer to improve the effectiveness of feature representa-
tion. Moreover, GFL can also increase the stability of the model and 
avoid overfitting issues. 

Here, the obtained features in former layer and deep layer are rep-
resented as F1 ∈ RPs×512 and F2 ∈ RPs×256. These two features are pre- 
fused to obtain the feature FC ∈ Rn×256 through concatenation and 
convolution operations (Conv1). Therefore, the gated map is obtained 
by 

GC = Sigmoid(conv2(FC)) (10)  

Where FC = conv1(F1; F2), conv2 also denote convolution operation. The 
gated map GC ∈ [0, 1]Ps×256. 

Node representations at deeper layers have larger receptive field and 

can effectively capture contextual information of the slide within a 
larger scope. Therefore, it is reasonable to assign larger weight to deep 
features rather than shallow features. Thus, the fused feature after gated 
fusion layer can be defined as: 

FG = (1+GC) ⊙ F2 + (1 − GC) ⊙ F1 (11)  

⊙is element-wise multiplication. Here, the gated fusion layer can fully 
retain the meaningful features and effectively suppress undistinctive 
features of the two layers. 

2.4.4. Attention-based MIL pooling 
In each branch, patch features at two magnifications are aggregated 

into slide-level representations through gated attention-based MIL 
pooling operation [44]. This operation provides each node with learn-
able attention weights, which not only assists the model to selectively 
aggregate the features of the patches to form an efficient representation 
of the slide, but also obtains interpretable heatmaps based on the 
attention scores. Therefore, slide-level feature representations can be 
expressed as: 

zsslide =
∑Ps

j=1

a⌢
s
j h
⌢
j
(
zsslide=

{
z20×
slide or z40×

slide

}
, zsslide ∈ R1×256) (12)  

Where h
⌢

jis the final feature vector of the jth instance in slide X. 

a⌢
s
j =

exp
{

w′T
(

tanh
(

VT h
⌢
j
T
)

⊙ sigm
(

Uh
⌢
j
T
))}

∑Ps

j=1
exp
{

w′T
(

tanh
(

Vh
⌢
j
T
)

⊙ sigm
(

Uh
⌢
j
T
))} (13)  

Where a
⌢s

j denote the attention score of the jth patch in the slide X under 

scale s.w′ ∈ R256×1,V ∈ R256×128and U ∈ R256×128 are trainable parame-
ters. tanh ( ⋅ ) and sigm( ⋅ ) are nonlinear activation function. 

The attention-based MIL pooling can assign attention weights to each 
instance to locate top-ranked patches and regions of interest (ROIs) at 
each scale. It also provides interpretable heatmaps for each slide ac-
cording to the x-y coordinates of the patches. 

2.4.5. Top2k heterogeneous subgraph (Top2k-HSG) 
In clinical scenarios, pathologists draw comprehensive diagnostic 

conclusions based on observing macroscopic information of patholog-
ical slides at low resolution and microscopic features at high resolution. 
This is due to the fact that patches in high magnification have hetero-
geneous correlations with their low-magnification counterparts, espe-
cially in critical regions. Therefore, a top2k heterogeneous subgraph 
(Top2k-HSG) is introduced across two magnification scales to assist the 
prediction of the dual-stream model. The architecture of Top2k-HSG is 
illustrated in Fig. 4. As shown in Fig. 4, Top2k-HSG consists of two top-k 
heterogeneous subgraphs, which are obtained according to the attention 
scores of patches in two parallel branches. 

Fig. 4(a) is the first top-k heterogeneous subgraph, which is estab-
lished based on the top-ranked instances at scale 20 × . Specifically, top- 
k instances are obtained and highlighted as the positive areas according 
to the attention scores of branch 1(20 × ). Then the corresponding 
patches at 40 × are localized using the downward mapping operation 
Lxy↓: 
{
F4k

40×

}
= Lxy↓

( {
Ftopk20×

})
(14)  

Where {Ftopk
20×} denote the feature representations of highlighted top-k 

image patches at 20 × . Here, Ftopk
20× ∈ Rk×256. Lxy↓( ⋅ )indicates a down-

ward mapping operation, which returns the features corresponding to 4k 
image patches at 40 × magnification according to the x-y coordinates. 
Therefore, {F4k

40×} are the feature representations of image patches at 40 
× . Note that the number of patches in 40 × is 4k via one-to-four Fig. 3. Gated fusion layer.  
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mapping function. Thus, each element can be written as F4k
40× = {Fk

40×,

Fk
40×,Fk

40×,Fk
40×},Fk

40× ∈ Rk×256. 
Afterwards, all the obtained image patches at scales 20 × and 40 ×

are utilized to form the heterogeneous subgraph, which includes two 
types of nodes and three types of edges. Here, the feature representa-
tions of image patches {Ftopk

20×} and {F4k
40×} are treated as the heteroge-

neous nodes of the topk subgraph. 
Therefore, the total number of nodes in the first top-k heterogeneous 

subgraph is 5k. As shown in Fig. 4(a), the heterogeneous subgraph also 
includes three types of edges el, eh and em. Here, el and eh denote the 
connections of homogeneous nodes at 20 × and 40 × , respectively. They 
can also be viewed as correlations between the homogeneous patches at 
the macro-histological level and the micro-histological level, respec-
tively. Whereas em indicates the cross-scale connections between het-
erogeneous nodes. Thus, the adjacency matrices at each scale can be 
expressed as Al

1 ∈ {0,1}k×kand Ah
1 ∈ {0,1}4k×4k, which are used to 

represent the connections of top-k instances in 20 × and connections of 
mapped 4k instances in 40 × through KNN algorithm, respectively. 
Furthermore, heterogeneous adjacency matrix Am

1 ∈ {0,1}k×4k is also 
applied to denote the contextual relationship of patches across scales. 
Therefore, the top-k heterogeneous graph based on 20 × can be 
expressed as: gk ∈ {Ftopk

20×,F4k
40×,Al

1,Ah
1,Am

1 }. 
Meanwhile, to fully exploit the heterogeneous information from the 

two branches, the top-k instances in scale 40 × are also selected and 
localized according to the attention scores of gated hypergraph convo-
lution network in branch 2. As shown in Fig. 4(b1), the squares in the top 
row indicate the obtained top-ranked patches in the branch 2. The cir-
cles represent the corresponding parent patches at 20 × . These patches 
are localized through an upward mapping operation: 
{
F̃
k
20×

}
= Lxy↑

( {
F̃
topk
40×

})
(15)  

Where F̃
topk
40× ∈ Rk×256 denote the feature of the top-k instances in the 

gated hypergraph convolutional network.Lxy↑( ⋅ ) is also a location 
mapping operation, which returns the feature of parent node at 20 ×

according to the x-y coordinates. Therefore, {F̃
k
20×} indicate the features 

of the parent patches at 20 × . The subsequent process is exactly similar 
as that of g1. The patches at 40 × are localized again using the downward 
mapping operation Lxy↓: 
{
F̃

4k
40×

}
= Lxy↓

( {
F̃
k
20×}

)
= {F̃

k
40×, F̃

k
40×, F̃

k
40×, F̃

k
40×

}
(16)  

{F̃
4k
40×} denote the feature representations of the upscaled image patches 

at 40 × , the total number of which is also 4k. Note that these 4k nodes 
include the original topk node features located based on scale 40 × . 

Likewise, the adjacent matrix is also obtained based on the approach 
in Fig. 4(a), which can be denoted as Al

2, Ah
2andAm

2 . Therefore, the sec-

ond top-k heterogeneous graph based on 40 × can be expressed as gk′
∈

{F̃
k
20×, F̃

4k
40×,Al

2,Ah
2,Am

2 }. 
To avoid information redundancy, these two top-k subgraphs are 

combined to form a Top2k-HSG and denote as g2k ∈ {gk,gk′} = {F2k
20×,F8k

40×,

Al,Am,Ah}. Here,F2k
20× = {Ftopk

20×, F̃
k
20×} and F8k

40× = {F4k
40×, F̃

4k
40×} are treated 

as heterogeneous nodes in the Top2k-HSG. 
It is worth noting that Top2k-HSG not only establishes correlations 

between key patches at each scale, but also introduces significant spatial 
heterogeneous relationships between these patches to guide the HSG- 
MGAF Net for adaptive prediction and ROI localization. 

Heterogeneous Subgraph Attention Network For the constructed 
Top2k-HSG, a two-layer Heterogeneous Subgraph Attention Network 
(HGAT) is applied to simulate multiple types of nodes and edges in g2k, 
as it leverages the heterogeneous graphs [45] to comprehensively learn 
context-aware correlations of the heterogeneous nodes. Here, the hier-
archical attention mechanism can be divided into node-level attention 
and semantic-level attention. 

Firstly, node-level attention is introduced to learn the correlation 
between the nodes based on a specific edge type, and then aggregates 
the features of neighborhoods to form node embeddings. Specifically, 
the feature representation of the node in g2k can be denoted as 
h̃j ∈ R1×256. Then, the feature embedding of the node can be obtained 
based on various edge types ̃e. Therefore, it can be expressed as: 

h̃
ẽ
j = σ

⎛

⎜
⎝
∑

j′∈Neẽ(h̃j)
aẽjj′h̃j′

⎞

⎟
⎠ (17)  

aẽjj′ =
exp
(
σ
(
aT
ẽ

[
h̃j ‖ h̃j′

]))

∑

j′∈Neẽ(h̃j)
exp
(
σ
(
aT
ẽ

[
h̃j ‖ h̃j′

])) (18)  

Where aẽ
jj′ denotes the weight coefficient of a node pair (h̃j,h̃j′) based on 

the edge type ẽ. h̃j, h̃j′ ∈ R1×256 are the feature representations of the 

node and its neighbor in Top2k-HSG. Neẽ(h̃j)denotes the neighbors of 
node h̃jbased on the edge type ẽ. ‖ represents the concatenation opera-
tion. aẽ is the node-level attention vector based on a specific edge type ̃e. 
In our Top2k-HSG, each node contains two types of edges denoted as ̃e =

{ẽ1, ẽ2} (̃e1 ∈ {el}or {eh}, ẽ2 ∈ {em}).Thus, the node embedding in 

Top2k-HSG is updated and denoted as h̃′
j = {h̃

ẽ1

j , h̃
ẽ2

j }. Here, h̃
ẽ1

j and 

Fig. 4. Top2k-HSG. Squares indicate the nodes at 40 × , while circles denote the nodes at 20 × .el(red line), eh(blue line) and em(black line) denote three types of 
edges in top2k-HSG. 
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h̃
ẽ2

j stand for the node feature representations based on edge type ̃e1 and 
ẽ2, respectively. Since node features obtained from heterogeneous edges 
are feature embeddings in different feature spaces, a space trans-
formation matrix M is designed to project edge type-specific features 
into the same feature space. 

h̃
′ẽ1

j = Mẽ1
⋅h̃
ẽ1

j , h̃
′ẽ2

j = Mẽ2
⋅h̃
ẽ2

j (19)  

Where Mẽ1 
and Mẽ2

are space transformation matrices. 
Then, semantic-level feature embedding is performed to adaptively 

fuse the features of h̃
′̃e1

j and h̃
′̃e2

j based on the learned weights of the two 
edge types (ẽ1and ̃e2). The weights of node feature embeddings based on 
each edge type can be expressed as 

[
ωẽ1
j ,ω

ẽ2
j
]
= Att

(
h̃

′̃e1

j , h̃
′ẽ2

j

)
(20) 

Finally, the semantic-level node feature embedding can be given by 

ĥj = ωẽ1
j h′ẽ1

j + ωẽ2
j h′ẽ2

j (21)  

WhereAtt( ⋅ )is the attention function, ωẽ1
j and ωẽ2

j are the attention 

weights of the feature h′ẽ1
j and h′ẽ2

j , respectively. 
Multi-scale pooling module. Top2k-HSG contains discriminative 

features of image patches at both scales after message passing mecha-
nism of heterogeneous nodes. Therefore, aggregating the node features 
of Top2k-HSG at multiple scales is meaningful for the our HSG-MGAF 
Net. Here, multi-scale pooling is module introduced to aggregate the 
heterogeneous node features of Top2k-HSG at two scales into an overall 
feature representation, which is shown in Fig. 5(a). 

Multi-scale pooling module mainly consists of two components: 
multi-scale attention module (Fig. 5(b)) and global average pooling 
(GAP) operation. As is shown in Fig. 5(b), multi-scale attention is used to 
handle the latent semantic gap between low-magnification and high- 
magnification patches, allowing patch features on the two scales to be 
fused more smoothly. Specifically, the transformed feature of image 
patches at 20 × is treated as a Query (Q), and the corresponding four 
image patch representations at 40 × are treated as Keys (K) and Values 
(V). Then, the contribution of each patch at 40 × to the image patch at 

20 × are obtained by attention mechanism. Finally, the image patches at 
40 × are aggregated into a feature representation F2k

att at 20 × based on 
their contributions to the parent image patch. This process can be 
expressed mathematically as 

Q = F2k
20×Wq,K = F8k

40×Wk,V = F8k
40×Wv (22)  

F2k
att = softmax

(
Q(K)T
̅̅̅̅̅
dc

√

)

⋅(V) = softmax

((
F2k

20×Wq
)
⋅
(
F8k

40×Wk
)T

̅̅̅̅̅
dc

√

)

⋅
(
F8k

40×Wv
)

(23)  

Where dc denotes the feature dimension of K. Here, dc=128. Wq, Wk and 
Wv are feature transformation matrices, which are trainable parameters 
of the multi-attention module. 

To maintain the spatial relationships of the heterogeneous nodes, 
GAP is performed to aggregate patch features of each scale. After that, 
the features at two scales are concatenated to obtain the final output 
feature Z2k ∈ R1×256. Here, 

Z2k =
[
GAP

(
F2k

20×

)
‖ GAP

(
F2k
att

)]
(24)  

2.4.6. Multi-scale adaptive feature fusion module 
The multi-scale adaptive feature fusion module is proposed to fully 

aggregate the slide-level features at two scales according to the attention 
score of each branch. As is shown in Fig. 6, we uses the aggregated 
feature of Top2k-HSG to adaptively guide HSG-MGAF Net to capture 

Fig. 5. Multi-scale pooling module. (a) Multi-scale pooling. (b) Multi-scale attention module.  

Fig. 6. Multiscale Adaptive Feature Fusion Module.  
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more comprehensive and distinctive features of each branch to improve 
the performance and efficiency of the model. 

Specifically, the attention weights of the two branches are obtained 
by cross-attention of the aggregated feature representations of Top2k- 
HSG and slide-level feature representations of each scale. Therefore, 
the corresponding attention weights can be given by: 

α1 = softmax

(
q2k
(
k20×

)T

̅̅̅̅̅
d1

√

)

= softmax

⎛

⎝

(
Z2kW2k

q

)
⋅
(
z20×
slide⋅W20×

k

)T

̅̅̅̅̅
d1

√

⎞

⎠ (25)  

α2 = softmax

(
q2k
(
k40×

)T

̅̅̅̅̅
d2

√

)

= softmax

⎛

⎝

(
Z2kW2k

q

)
⋅
(
z40×
slide⋅W40×

k

)T

̅̅̅̅̅
d2

√

⎞

⎠ (26)  

Where α1 and α2 denote the attention weights of the two branches. Z2k 

indicate the aggregated feature representation of Top2k-HSG. z20×
slide and 

z40×
slide are slide-level feature representations of WSI at 20 × and 40 × , 

respectively. d1 and d2 denote the feature dimension of k20 × and k40 × , 
respectively. Here, d1 = d2 =256. W2k

q , W40×
k and W20×

k are also trainable 
feature transformation matrices of the module. 

Then, the output feature is obtained by the weighted sum of the 
features in scale 20 × and 40 × . 

Z = α1
(
v20×)+ α2

(
v40×) = α1

(
z20×
slideW

20×
v

)
+ α2

(
z40×
slideW

40×
v

)
(27)  

Where Z denotes the final prediction of the model after the fusion of two 
branch features, which could selectively retain the most significant 
features of the two branches. v20 × and v40 × are feature representations 
of scale 20 × and 40 × . W20×

v and W40×
v are also trainable parameters. 

2.4.7. Model optimization 
Drop Edge. For gated hypergraph network branch, the connections 

between image patches in each slide are redundant because each hyper 
edge can connect more than two nodes in the constructed hypergraph. 
Therefore, drop edge [46] is applied to improve the generalization 
ability and prevent overfitting issues. Here, we drop 20 % of the hyper 
edges in the hypergraph, which is randomly selected from the con-
structed hypergraph. This operation can also reduce computation 
burden and prevent overfitting in the iteration. 

Loss Functions. Designing a task-specific loss function is a critical 
issue for weakly supervised models, as it can drive the model to 
approximate the optimal solution in a refined manner. 

(1) Cross-entropy Loss. For our classification task, we adopt con-
ventional cross-entropy loss as a main part of the loss function, 
which can be written as: 

LCE = − log(Pt) (28)   

Where Pt stands for the class prediction probability of the model, the 
value of which is ranging from 0 to 1. 

(1) Self-supervised Contrastive Learning Loss. In clinical sce-
narios, the diagnostic results obtained by pathologists at low 
magnification should be generally consistent with those obtained 
at high magnification. Therefore, self-supervised contrastive 
learning constraint are introduced on the slide-level feature 
representations at two scales to ensure the consistency of pre-
dictions. Here, we adopt InfoNCE loss [47] as self-supervised 
contrastive learning loss function and expressed as: 

LS = − logσ
(
fD
(
z20×
slide, z

40×
slide

))
− logσ

(
1 − fD

(
z20×
slide, z̃

40×
slide

))
(29)   

Where ̃z40×
slide denote the negative samples obtained by corrupting spatial 

coordinates of instances in z40×
slideby row-wise and column-wise shuffling. 

That is, ̃z40×
slide is a slide-level representation of the WSI at scale 40 × after 

the instances are spatially shuffled. Therefore, the z20×
slideand z40×

slideare slide- 
level feature representations of a specific WSI at scale 20 × and 40 × , 
which forms a positive sample pair. Whereas z20×

slide and z̃40×
slide form a 

negative sample pair. Note that, the slide-level presentation z̃40×
slide is not 

unique for a specific z20×
slide in the training process. In the function, fD( ⋅, ⋅) 

acts as a discriminator, which takes the slide-level feature vectors of 
each scale as input and evaluates the agreement score between them 
through a simple dot-product operation. Thus, the self-supervised 
contrastive learning loss is to ensure the consistency of slide-level rep-
resentation z20×

slide and z40×
slide while discriminate z20×

slideand ̃z40×
slide by constraint 

the spatial coordinates of the corresponding instances at both scales. 
Therefore, it also ensures the interpretability of the patches at two 
scales. The total loss function L can be written as: 

L = βLCE + (1 − β)LS (30)  

Where β is the weighting factor of the two loss functions. 

3. Results 

We constructed the experiments on two whole slide image datasets: 
CAMELYON16 and the Cancer Genome Atlas non-small cell lung cancer 
(TCGA-NSCLC). 

3.1. Datasets description 

CAMELYON16: CAMELYON16 is an H&E-stained whole slide image 
of lymph node metastasis that contains pixel-level annotation and is 
publicly available. The dataset contains a total of 399 whole slide images 
of sentinel lymph nodes, which are officially divided to training set and 
test set. The training set consists of 270 whole slide images, including 
111 positive slides and 159 negative slides. To better ensure the reli-
ability of the model, the 270 official training slides was randomly split 
into training set and validation set again according to the ratio of 
8.5:1.5. The official testing set consists of 129 slides containing 49 
positive slides and 80 negative slides. In the preprocessing stage, the 
background in each slide was discarded and the foreground was 
retained. The foreground is then cropped into image patches with the 
size of 256 × 256 at 20 × and 40 × , respectively. Meanwhile, the x-y 
coordinates of these patches are preserved in each scale. The average 
number of image patches at these two scales is approximately 9066 and 
45,253, respectively. 

TCGA-NSCLC: The dataset includes a total of 993 whole slide images 
of two lung carcinoma subtypes: lung squamous cell carcinoma (LUSC) 
and lung adenocarcinoma (LUAD). The number of LUADs was 507 WSI 
images from 444 confirmed cases, while the number of LUSCs was 486 
WSI images from 452 confirmed cases. The TCGA-NSCLC dataset only 
provide slide-level labels for H&E-stained whole slide images. In our 
case, we randomly split it into training, validation and testing sets in the 
ratio of 65:15:25. Here, the preprocessing procedure is exactly the same 
as CAMELYON16. Thus, an average of 11,589 and 45,890 non- 
overlapping patches with sizes of 256 × 256 are obtained at 20 × and 
40 × , respectively. 

3.2. Implementation details 

In the implementation, HSG-MGAF Net follows an end-to-end 
learning manner with only slide-level labels available for both data-
sets. For CAMELYON16 dataset, the learning rate and weight decay are 
set to 1 × 10− 4 and 5 × 10− 6, respectively. While for TCGA-NSCLC 
dataset, the corresponding parameters are set as 0.8 × 10− 4and 3 ×
10− 6, respectively. During the training process, if the loss of the 
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validation set does not decrease for 5 consecutive epochs, the learning 
rate will decay by the factor of 0.8. Meanwhile, the early stopping is also 
performed to prevent overfitting issue. The hyper parameter β is set to 
0.8 as the model has to balance classification accuracy and consistency 
of the predictions in two branches. In both cases, our models use the 
Adam optimizer and are trained for 100 epochs on a Tesla V100 with a 
batch size of 1. The hyperparameter k in Top2k-HSG is set as 5 and 10 for 
CAMELYON16 and TCGA-NSCLC dataset, respectively. The choice of 
hyperparameter k is empirically based on the statistical features of each 
data set. In the experiment, we use the area under curve (AUC), accuracy 
(ACC) and F1 score to evaluate the performance of the model. 

3.3. Results 

Table 1 shows the performance of our HSG-MGAF Net and SOTA 
weakly supervised approaches on both datasets. As shown in Table 1, the 
overall prediction ACC/AUC/ F1 score of the HSG-MGAF Net can ach-
ieve 92.7%/0.951/0.892 on CAMELYON16, and 92.2%/0.957/0.919 on 
TCGA-NSCLC after 5 trials, respectively. The results indicated that the 
HSG-MGAF Net has outperformed other comparative models on both 
datasets. The performance improvement is higher on CAMELYON16 
than that of TCGA-NSCLC. This is mainly because most positive slides in 
the CAMELYON16 only contain a small portion of the positive area. 
Therefore, it is more effective to utilize heterogeneous subgraphs of top- 
ranked instances at multiple scales to guide the model for predictions. 
While positive slides in the TCGA-NSCLC dataset generally have rela-
tively more positive regions than CAMELYON16. Thus, the performance 
improvement on the TCGA-NSCLC dataset is relatively limited. 

3.4. Discussion 

To further illustrate the effectiveness of the HSG-MGAF Net, we 
divide the SOTA models into 5 main categories for comparison. (i) The 
existing approaches are mainly based on the instances i.i.d assumption 
supplemented by instance constraints, such as traditional MIL pooling 
models, ABMIL [44], MIL-RNN [23], CLAM [24] and DTFD-MIL [33]. 
However, the performances of these frameworks are limited as they 
ignore the inter-instance dependencies within the slide. (ii) DSMIL [35] 
simulates the context-aware features of slides by concatenating patch 
features at multiple scales, which can be regarded as a representative 
study of local context-based MIL. However, it only considers the corre-
lation between the highest-ranked instance and others after feature 
embedding at different scales, which cannot fully describe the implicit 
contextual information between the image patches in the slide. (iii) 
Currently, the Transformer-based MIL becomes an effective branch for 
giga-pixel pathology slide prediction. It introduces a self-attention 
mechanism to emphasize the global relationship between image 

patches in the slide, which have yielded SOTA performance, such as 
TransMIL [34]. However, it also calculates attention scores between 
unrelated instances, which not only suffers from computational redun-
dancy but also causes performance degradation. (iv) Patch-GCN [40], 
ABMIL-GCN [21] and Graph-Transformer [28] are attempt to establish 
the interaction between image patches and their surrounding neighbors 
to describe the slide, which is more applicable in real clinical scenarios. 
Nevertheless, the multi-scale heterogeneous relationships that exist in 
slide have still not been represented and utilized. (v) Recently, hetero-
geneous graph concept has been introduced in whole slide image pro-
cessing. That is, image patches at each scale are treated as 
heterogeneous nodes, which are utilized to build a hierarchical hetero-
geneous graph to simulate the correlation of the heterogeneous nodes at 
the multiple scales, i.e. H2-MIL [42]. However, it suffers from huge 
computational burden. This is because H2-MIL constructs a heteroge-
neous graph with the "resolution" attribute to explicitly simulate the 
feature and spatial-scale relationships of all patches at multiple resolu-
tions. That is, the method not only includes the message passing for all 
the nodes from homogeneous scale, but also those from the heteroge-
neous scale. In contrast, our model exploits only the most critical het-
erogeneous subgraphs instead of all heterogeneous information at both 
scales. The computational cost of our model is 8.2 GFlops and 5.7 GFlops 
for CAMELYON16 and TCGA-NSCLC dataset, respectively. While that of 
the H2-MIL is 12.7 GFlops and 8.9 GFlops for these two datasets. 
Therefore, our model can greatly reduce the computational burden 
while effectively leveraging heterogeneous information compared with 
H2-MIL. 

While HSG-MGAF Net not only exploits the low-order and potential 
high-order correlations of image patches at each scale, but also leverages 
the Top2k-HSG at these scales to guide the model for adaptive prediction 
and ROI localization. Therefore, it outperforms all the other competing 
methods, even H2-MIL. Besides, contrastive learning can be viewed as a 
spatially adaptive refinement constraint on each node that maintains 
high predictive consistency at both scales. This feature also improves the 
interpretability of the obtained heatmap. 

Feature Visualization. To gain a deeper understanding of the HSG- 
MGAF Net, the feature representations of the whole slide images in the 
latent space are visualized via T-SNE, as shown in Fig. 7. Fig. 7(a)–(c) 
and (d)–(f) are slide-level features of two datasets at 20 × , 40 × and 
fusion scales, respectively. Each slide is denoted as a dot in the latent 
space, where red and blue dots represent the positive slides and negative 
slides, respectively. In Fig. 7, the results indicate that HSG-MGAF Net 
with two scales can clearly distinguish two categories in the latent space 
for both datasets. Compared with models based on a single-scale, they 
achieve smaller intra-class variance and larger inter-class variance on 
both datasets. This means that HSG-MGAF Net can effectively capture 
discriminative heterogeneous information of key patches based on 

Table 1 
Results on the CAMELYON16 and TCGA-NSCLC dataset (The values highlighted in bold denote the optimal solutions, the values underlined denote the suboptimal 
solutions).    

CAMELYON16  TCGA-NSCLC 

Method Accuracy AUC F1 score Accuracy AUC F1 score 

MaxPooling 0.642±0.029 0.701±0.013 0.564±0.018 0.794±0.016 0.851±0.021 0.742±0.011 
MeanPooling 0.598±0.031 0.539±0.003 0.315±0.085 0.751±0.022 0.807±0.017 0.725±0.048 
ABMIL 0.823±0.011 0.858±0.013 0.710±0.026 0.834±0.017 0.848±0.006 0.821±0.014 
MIL-RNN 0.834±0.014 0.857±0.027 0.781±0.013 0.864±0.014 0.865±0.008 0.847±0.007 
DSMIL 0.833±0.023 0.878±0.019 0.812±0.022 0.875±0.031 0.897±0.024 0.873±0.017 
CLAM-SB 0.817±0.033 0.843±0.028 0.796±0.037 0.871±0.003 0.938±0.021 0.863±0.024 
CLAM-MB 0.830±0.009 0.873±0.012 0.730±0.008 0.878±0.043 0.949±0.019 0.874±0.028 
TransMIL 0.801±0.027 0.828±0.036 0.773±0.028 0.886±0.019 0.946±0.013 0.868±0.026 
DTFD-MIL 0.892±0.014 0.923±0.012 0.862±0.026 0.891±0.017 0.947±0.024 0.883±0.021 
Patch-GCN 0.876±0.031 0.918±0.017 0.864±0.027 0.875±0.019 0.935±0.019 0.857±0.027 
ABMIL-GCN 0.909±0.003 0.921±0.004 0.875±0.005 0.895±0.011 0.950±0.013 0.891±0.017 
Graph-Transformer 0.893±0.026 0.923±0.021 0.876±0.019 0.919±0.011 0.951±0.013 0.901±0.008 
H2-MIL 0.912±0.017 0.924±0.009 0.876±0.017 0.917±0.016 0.953±0.018 0.902±0.014 
HSG-MGAF Net(Ours) 0.927±0.018 0.951±0.016 0.892±0.019 0.922±0.009 0.957±0.014 0.919±0.012  
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multi-scale hierarchical graph architecture for high-precision 
prediction. 

Interpretability. The HSG-MGAF Net can not only establish the 
intrinsic low-order and potentially high-order nonlinear relationships 
between instances at two independent scales to obtain slide-level pre-
dictions, but also leverage the heterogeneous correlations of the highly 
ranked instances in two scales to guide the HSG-MGAF Net for adaptive 
ROI localization. Therefore, it can provide more interpretability from 
both macro morphological and microscopic features perspectives. Here, 
the attention weights of patches at each scale are obtained through 
attention-based MIL pooling modules of each branch. Specifically, this 
module achieves slide-level feature representation by adaptively 
aggregating the features of each patch. In this process, the weight of 
each patch can also be obtained according to Eq. (13). Subsequently, 
these weights are then converted into attention scores and mapped into 
the input space. Finally, the interpretable heatmaps on each scale can be 
obtained by index matching the patches with the attention scores. Here, 
we use red to highlight patches with high attention scores and blue to 
indicate patches with low attention scores. Fig. 8 shows the input slides 
with pixel-wise annotations, highlighted interpretable heatmaps at both 
scales, and the top-k instances selected from the ROIs, respectively. In 
Fig. 8 column 2 and 3, the results indicated that the obtained heat maps 
could accurately delineate the exact tumor boundaries, which were 
highly consistent with human pathology expertise. Meanwhile, as 
shown in Fig. 8(d), (h) and (l),the ROIs obtained from heatmaps at 20 ×
and 40 × have high prediction consistency, which demonstrated the 
effectiveness of the model. Furthermore, heatmaps at 20 × and 40 × can 
effectively complement each other when encountering uncertain pat-
terns. Specifically, the patches at 20 × capture macroscopic infiltration 
between heterogeneous tissues, while the patches at 40 × provides 
microscopic evidence of the presence of cancer cells. This can also be 
illustrated in the subfigures in columns 2–4 of Fig. 8. This is due to the 
fact that the message passing mechanism between heterogeneous nodes 
in Top2k-HSG can refine the feature representation of every node in 

heterogeneous subgraph, thereby enhancing feature expression ability 
of each node. That is, the node feature is more discriminative and 
deterministic after heterogeneous message passing. This is similar to 
adding adaptive patch-wise pseudo labels to WSI at each scale. Mean-
while, the deterministic highlighted nodes at each scale will further 
promote the accuracy of node feature representation at homogeneous 
scales through the massage passing mechanism. Therefore, this iterative 
process can improve the interpretability of the model. The result in Fig. 8 
(d), (h) and (l) also demonstrate that the heat map obtained under the 
high-magnification branch is a refinement and supplement of the result 
under the low-magnification branch. 

However, HSG-MGAF Net still has limitations in selecting fixed 
number of instances to construct Top2k-HSG for all slides. In real sce-
narios, the spatial density of positive instances in each slide is not always 
the same. While the message passing through the heterogeneous sub-
graph with a fixed number of instances will lead to failure predictions in 
some cases. For instances, the Fig. 9 is a positive slide with a small 
portion of positive areas whereas the HSG-MGAF Net predicted as 
negative. This is because the hyper parameter k is inappropriate in this 
case. Selecting the top k instances will result in the introduction of 
negative instances. Therefore, the message passing of the nodes in 
Top2k-HSG will not improve the feature representation of these nodes. 
On the contrary, it will weaken the feature representation of the con-
nected instances at 40 × through heterogeneous information passaging. 
Thus, the corresponding zoomed in areas in Fig. 9(b) and (c) are present 
false negative results (black arrow) compared to the pixel-wise anno-
tation in Fig. 9(a). In the future, we will attempt to develop an adaptive 
heterogeneous feature selection algorithm for further improve the per-
formance of the model. 

3.5. Ablation study 

To verify the effectiveness of proposed components in our HSG- 
MGAF Net, we conduct a series of ablation studies on both datasets, 

Fig. 7. Slide-level feature embedding for CAMELYON16 and TCGA-NSCLC using T-SNE. In (a)-(c), red dots represent the positive and blue dots represent the 
negative. In (d)-(f), red dots and blue dots represent LUAD and LUAC, respectively. 
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such as model without (w/o) Top2k-HSG, Topk-HSG, gated fusion layer 
(GFL) and contrastive loss (LS). These results are shown in Table 2. From 
Table 2, the result indicated that HSG-MGAF Net outperforms the 
baseline model by approximately 4.3 and 5.5 % for CAMELYON16 and 
TCGA-NSCLC dataset, respectively. Furthermore, the results also 
showed that the performance of the model is degrade without top-K 
subgraph, and further deteriorates without top-2k heterogeneous sub-
graph. This is because the top-k heterogeneous subgraph of branch 1 is 

obtained by gradient backpropagation based on the graph structure, 
while another top-k heterogeneous subgraph of branch 2 the is obtained 
based on gradient backpropagation based on the hypergraph frame-
work. Note that, the top-k heterogeneous subgraph from branch 1 and 
branch 2 have some complementary properties. Therefore, these fea-
tures are both significant for WSI images. The heterogeneous subgraph 
generated by using only one of the branches will cause the loss of critical 
information in the other branch. Therefore, it can be concluded that 

Fig. 8. Interpretable heatmaps at scale 20 × and 40 × . The subfigures in the first column are the input slides and pixel-level annotations. The subfigures in second 
and third columns present the corresponding attention heatmaps generated by HSG-MGAF Net at scale 20 × and 40 × , respectively. The subfigures in the fourth and 
fifth columns show the zoomed-in ROIs and highlighted top-k instances at scales 20 × and 40 × , respectively. 

Fig. 9. Failure case in WSI prediction.  
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Top2k-HSG module fully exploits the significant heterogeneity infor-
mation of highly ranked instances at both scales to guide the model in 
each branch to capture more discriminative and fine-grained informa-
tion for further prediction. Meanwhile, the result in Table 2 showed that 
contrastive learning is also a significant factor in our HSG-MGAF Net. 
Since self-supervised contrastive learning aims to maximize the consis-
tency of predictions at two scales for each slide, thereby reducing the 
occurrence of false negative and false positive instances. This feature can 
also greatly improve the interpretability of heatmaps. While for GFL, its 
function is to fuse features in deep layer and shallow layer to enhance 
the representation of meaningful information and suppress noise. 
Therefore, the performance of GFL is relatively limited compared with 
Top2k-HSG module and self-supervised contrastive learning loss. 

4. Conclusions 

In this paper, we propose an HSG-MGAF Net, which build the het-
erogeneous subgraph topology of critical image patches at two scales for 
adaptive slide label prediction and ROI localization using only slide- 
level labels. It not only fully exploits the low-order and potential high- 
order correlations of image patches though graph and hypergraph ar-
chitecture in two independent scales, but also leverages the existed 
heterogeneous information of these scales to guide the backbone 
network for high-precision analysis and prediction. Meanwhile, Self- 
Supervised contrastive learning is introduced across the two scales to 
maximize the consistency of predictions on both scales. The result 
demonstrated that the Top2k-HSG can achieve significant performance 
improvement with relatively less computational cost, which lays the 
foundation for heterogeneous graph applications in computation 
pathology. 
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