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Abstract
The dynamics of a Pearcey–Gaussian (PG) beam with Gaussian potential in the fractional
Schrödinger equation (FSE) are investigated. In free space, varying the Lévy index offers a
convenient way to control the splitting and bending angle of the beam. In the presence of
Gaussian potential, with increasing propagation distance, the process is repeated in a
breath-like motion. The periodicity also can be changed by adjusting the potential parameter
and incident beam arguments, such as potential height, potential width and transverse
wavenumber. The transmission and reflection of the beam can also be controlled by varying
the potential parameters. Moreover, when a symmetrical Gaussian potential barrier is selected,
total reflection is more likely to occur. These unique characteristics demonstrate the possibility
of controlling the dynamics of PG beams with the FSE system.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In the past few decades, novel beams have attracted extensive
attention as a mean of manipulating light in the related physical
fields. Beams are described by particular functions, such as
the Airy beam [1–4], Bessel beam [5], Gaussian beam [6] and
Pearcey beam [7, 8], which are quite popular in the research
of paraxial beam propagation in conventional optics. Scholars
have focused more on the unique characteristics of the beam
that can serve to apply in particle manipulation [9], microscopy
and light bullets [10–12].

The Pearcey beam was proposed firstly in 1946 when
Pearcey designed the structure of an electromagnetic field
near caustic with the Pearcey function. The Pearcey func-
tion described the diffraction about a cusp of a caustic within
the catastrophe the theory framework [13]. In 2012, Ring
et al discovered theoretically that the Pearcey beam had these

∗ Author to whom any correspondence should be addressed.

remarkable propagation properties: form-invariance, self-
healing and spontaneous-focusing property [14]. Subse-
quently, a virtual source was presented to generate the Pearcey
beam in 2014 [15]. In 2015, Kovalev et al regarded the Pearcey
beam as a superposition of two first order half-Pearcey beams
[16]. Inspired by these studies, a family of extended researches
about Pearcey beam had been put forward [17–19], the major-
ity of them focused on their features, such as one-dimensional
finite energy Pearcey beam was investigated and revealed a
dual self-accelerating behavior [20]. Then, the dynamics of
partially coherent Pearcey–Gaussian (PG) beam propagating
in the free space were discussed [21]. In 2021, a unique form
of the odd PG beam under a parabolic potential was pre-
sented [22]. In the same year, dual-focusing property of a
one-dimensional quadratically chirped PG beam was studied
analytically and numerically [23]. Researchers have also ana-
lyzed other type of Pearcey beam theoretically and experimen-
tally, including odd-Pearcey beam [24], Pearcey solitons [25],
symmetric PG beam [26–28] and PG vortex beam [29, 30].
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On the other hand, the fractional effect, such as quantum
oscillator and Talbot effect, widely existed in various fields
of quantum mechanics. In 2000, the fractional Schrödinger
equation (FSE), a generalization of the standard Schrödinger
equation, first formulated by Laskin [31–33], had received sig-
nificant attention. Soon afterwards, an experimental structure
of the FSE was designed by Longhi [34], the model based on
transverse light dynamics in aspherical optical cavities. This
scheme sparked a growing interest to explore the dynamics of
beam in the FSE. Up to the present, FSE had been comprehen-
sively discussed in but not confined to party-time-symmetry
[35], gap solitons [36] and dynamics of Airy beam [37, 38]. In
2015, the dynamics of beam in the FSE was probed and discov-
ered that it follows a zigzag and funnel-like trajectory in real
space on one or two dimensions [39]. Among the investiga-
tions, the dynamics of the Gaussian beam with a variable coef-
ficient had been reported and the results have shown that the
beam splits into two sub-beams [40], meanwhile, they exhib-
ited a periodically oscillating behavior in the absence of the
chirp, while there is chirp, one of the splitting beams was sup-
pressed, and another shown a periodic oscillation. By adjust-
ing the double-barrier potential, it can also easily achieve the
beam propagation management [41, 42]. With the deepening
research for the FSE, more results have been observed, such as
the evolution of Airy beams in a linear potential [43], dynamics
of Bessel–Gaussian beam [44], propagation of Airy–Gaussian
beam with Gaussian potential [45, 46] and so on. In addi-
tion, the evolution of super-Gaussian beam under the FSE has
been considered numerically and theoretically [47]. Recently,
much interest has also been drawn to Airy–Gaussian vortex
beams and abruptly autofocusing circular Airy–Gaussian vor-
tex beams, modeled by the FSE [48, 49], which have extremely
reference value to the study of FSE.

Similar to the Bessel beam and Airy beam, a pure Pearcey
beam can become finite and physically accomplished by mod-
ulating the Pearcey beam with a Gaussian function in real
space, whose acceleration property could be completely real-
ized in theory and experiment. At the same time, the purpose of
controlling the beam can be achieved by adjusting the potential
parameters. Therefore, it is essential to investigate the dynam-
ics of the PG beam with a Gaussian potential in the framework
of FSE.

In this letter, the dynamics of a PG beam with a Gaus-
sian potential based on the FSE by using the split-step Fourier
method are investigated. In the absence of Gaussian poten-
tial, the beam splitting, and its bending degree is controlled
by the Lévy index. Furthermore, the beam exhibits a periodic
evolution in the Gaussian potential. Under a certain circum-
stance, light beam may even transmit and reflect. The above
conclusion provides a powerful and effective way for the beam
control and can find many applications in optics, such as light
switch and optical router.

2. Propagation model

In the paraxial approximation, spatial beam evolving along
direction z is governed by such a FSE which can be described
in the normalized form.

i
∂

∂z
ψ(x, z) − 1

2

(
− ∂2

∂x2

) α
2

ψ(x, z) = V(x)ψ(x, z), (1)

whereψ(x, z) is the field amplitude of optical beam, the dimen-
sionless transverse coordinates and propagation distance are
denoted by x and z, respectively. x = η/x0 and z = ξ/kx0

2, we
note here that x0 is the transverse scale, kx2

0 is the correspond-
ing Rayleigh range. k = 2πn/λ0 stands for the wavenumber, n
is the photorefractive index, α represents Lévy index and λ0 is
the wavelength. When the Lévy index takes 2, FSE becomes
into a standard Schrödinger equation. Firstly, the external
potential is not considered. By using the Fourier transform
method, we can obtain the following equation:
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in equation (2),
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Fourier transform of ψ(x, z) and k denotes the spatial fre-
quency. The solution of equation (1) with initial condition
ψ(x, 0) can be written by
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Herein, a PG beam as an input is considered as:

ψ(x, 0) = A0Pe(x) exp(−χ0
2x2) exp(−iμx), (4)

in which μ express a transverse wavenumber, χ0 is
the distribution factor, A0 is the amplitude and Pe(x) =∫ +∞
−∞ exp

[
i
(
s4 + sx

)]
ds represents the Pearcey function.

To realize the propagation control of the PG beam, we
consider a Gaussian potential, which has the following form:

V(x) = p

{
C1 exp

[
− (x − x0)2

d0
2

]
+ C2 exp

[
− (x + x0)2

d0
2

]}
,

(5)
where p is the potential height, x0 denotes the central location
of the potential, d0 stands for the potential width. In addition,
when C1 and C2 are positive, it represents the potential barrier,
conversely, when their sign is negative, it corresponds to the
potential well.

3. Results and discussion

3.1. Propagation dynamics of Pearcey beam without the
Gaussian potential

Now, we analyze the propagation of the Pearcey beam without
the Gaussian potential in the free space by using the split-step
Fourier method.

In the following studies, we show the propagation property
of Pearcey beam with different Lévy index without the Gaus-
sian potential in figure 1. As can be seen from figure 1,
the Pearcey beam splits into two sub-beams accelerating
in opposite directions after a short focusing, and exhibits
a dual self-bending behavior. During the propagation, these
sub-beams are symmetric about x = 0. In addition, from
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Figure 1. Evolution of the Pearcey beam without the Gaussian potential barriers under different Lévy index α: (a1) α = 1 (a2) α = 1.5 (a3)
α = 1.8 (a4) α = 2. The other parameters are χ0 = 0.01, μ = 0.

Figure 2. The evolution plots of the PG beam with Gaussian potential barriers. Here, χ0 = 0.01, 0.1, 0.9 from top row to bottom row,
and α = 1, 1.2, 1.5, 2 from left column to right column, respectively. The other parameters are x0 = 10, p = 20, d0 = 1.

figures 1(a1)–(a4), one can substantially find interference pat-
tern in the middle of the sub-beams, which is similar to fish
scales. As the Lévy index increases, region of interference pat-
tern gradually decreases, moreover, the profile of the sub-beam
changes from straight line to curved, and the degree of bending
also increases. For Lévy index α = 2 in figure 1(a4), the cur-
vature of the main lobe reaches its maximum. This property
is remarkably different from the case in the FSE. The Lévy
index, thus, can be utilized to control the degree of bending of
the beam.

3.2. Evolution properties of PG beam with the Gaussian
potential

Here we focus on the dynamics of PG beam with the Gaussian
potential, the potential is introduced to control the propaga-
tion properties of PG beam modeled by the FSE, some of the
original properties have been discussed.

We consider the evolution of PG beam in the Gaussian
potential under different Lévy index α and distribution fac-
tor χ0 in figure 2, χ0 determines whether the incident beam
tends to be Pearcey or Gaussian distribution. As seen in
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Figure 3. The evolution of the PG beam with Gaussian potential barriers for different potential width d0 and potential height p. The
potential height is respectively d0 = 0.5, 1.6, 2.4 from left column to right column. The potential width is p = 5, 45, 100 from top to bottom.
Here, the other parameters are the same as figure 1.

figure 2, on the whole, the incident beam splits into two sub-
beams after a short distance and then alters the transmission
direction after being reflected by the potential barrier, the rep-
etition of this process results in periodic self-imaging proper-
ties. Although the sub-beam is well localized in the potential
barriers, it is evident to recognize that apparent transmission
phenomenon occurs in figures 2(a1)–(a4). This is due to the
leakage of the side lobe at large incident beam. On the other
hand, characteristics of the Gaussian beam dominate with the
gradually increasing of χ0. Remarkably, the side lobe of PG
beam in figures 2(c1)–(c4) decreases sharply, the intensity
distribution still shows periodic evolution, and it is the most
distinct in figure 2(c1). With the increase of α, the beam ulti-
mately evolves into chaos and the speed of formation is getting
faster. The explanation of this phenomenon is that the peri-
odic transmission of the beam, wherein with the increasing of
Lévy index, the interference of the reflected beams becomes
stronger, it is the existence of simultaneous interaction and

interference force of reflected beams that lead to the chaotic
behavior of PG beam propagating in potential barriers.

Next we analyze the characteristics of PG beam in Gaussian
potential barriers with different potential height p and potential
width d0, the corresponding results are shown in figure 3. The
diffraction effect of the PG beam and the Gaussian potential
barrier both result in that the light beam exhibits in a periodi-
cally bound state. In figure 3, much as in the pioneering studies,
the intensity distribution of the PG beam is characterized by
periodic evolution within a certain region. Our results indicate
that with the increasing of p, the transverse region of the beam
bound state becomes narrower and that the period gradually
reduces in figures 3(a2)–(c2) and (a3)–(c3). When the poten-
tial width is small, this phenomenon is not obvious, only partial
transmission occurs (see figures 3(a1)–(c1)). The mechanism
by which potential height affects the period can be explained in
this way: the potential barrier seems to be a bulge with an ideal
reflection wall, in which the light beam transmits but hardly
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Figure 4. The intensity distribution of PG beam with Gaussian potential barriers at different potential width d0. (a) d0 = 0.6 (b) d0 = 1.8.
Here, the other parameters are χ0 = 0.1, μ = 0, α = 1.3, x0 = 10, d0 = 2.

passes through the wall. If the potential barrier is high enough,
its shape will change, the bound space of the potential barrier
will become smaller, which affecting the reflection position of
the beam, and leads to the decrease of propagation periodicity.
Similarly, as d0 increases, these behaviors are consistent with
the increasing of p. Furthermore, the larger potential width, the
more the inner wall of the potential barrier expands inward. As
a result, the bound space and the period of the beam become
smaller, displayed in figures 3(a1)–(a3). These phenomena can
be employed in optical tweezers and optical traps.

To better understand the above phenomenon, figure 4
depicts the intensity distribution of the PG beam under dif-
ferent potential width d0. In figure 4(a), it is clearly evident
that the intensity distribution of the sub-beams are always sym-
metric about x = 0. As the rising of the transmission distance,
PG beam exhibits a periodic evolution. Extremely when z = 0,
a peak is formed. However, these behaviors change dramati-
cally for the cases with the increasing of z, in which the beam
starts to split and the side lobe begins to appear, at the same
time, the energy of the main lobe becomes decrease when in
the middle of a period. Whereas when the transmission dis-
tance is large enough, the energy of the side lobe turns weaker
and converges towards the main lobe, which regains its domi-
nance. The whole process presents a periodic evolution. There
is a similar phenomenon in figure 4(b). The comparison of (a)
and (b) in figure 4 discover that the distance required to com-
plete a period for d0 = 1.8 is shorter than that d0 = 0.6, and

the more intense evolution of the beam at a large potential bar-
rier width. The explanation for this phenomenon is that the
increase in d0 produces a thicker potential barrier wall, which
allowing the beam to reflect in a narrow range. This leads to a
smaller period. Previous studies have also shown that the PG
beam exhibits a periodic stable bound state by regulating the
parameter of the potential. This helps achieve the purpose of
controlling the beam.

The intensity evolution of the PG beam under the Gaussian
potential barriers with varying the central position of poten-
tial x0 and transverse wavenumber μ is depicted in figure 5.
We discover that the deflection direction and the deflection
angle of the beam can be controlled by adjusting theμ. In addi-
tion, the PG beam shows the ‘mirror reflection’ phenomenon.
It is also shown, when μ = 0 that the incident beam splits into
two sub-beams and undergoes the periodic evolution. While
the sub-beam oscillates along the zigzag path and the symme-
try disappear when μ �= 0. It is obvious that the initial input
deflects to the right when μ < 0, but situation is reversed when
μ > 0. Therefore, by varying the transverse wavenumber, the
intriguing zigzag propagation may have potential applications
in the light modulators and optical switch. As the value of
|μ| increases, there is even a transmission phenomenon in
figures 5(a1)–(c1) and (a5)–(c5), owing to a sufficient veloc-
ity, which causes the potential barrier wall is broken through
by the incident beam, moreover, the amplitude of lateral swing
and the period increase significantly with the growth of the
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Figure 5. The evolution of the PG beam with the Gaussian potential barriers. Here, x0 = 10, 15, 20 from top row to bottom row, and
μ = −60, −3, 0, 3, 60 from left column to right column, respectively. The other parameters are χ0 = 0.1, d0 = 1, p = 30, α = 1.

location of the potential barrier. As a result, the confinement
space of the beam can be changed by adjusting the x0.

To realize the propagation control of light beam, we con-
sider the evolution of the PG beam with different combination
of potential wells and barriers in figure 6. When in the dou-
ble potential wells, the beam splits first, a small portion of
sub-beam is reflected by the barrier wall, and most of it is trans-
mitted, which generate the interference pattern in the middle
region of two potential wells (see figures 6(a1)–(c1)). Simi-
larly, under a single potential well, the split beam propagates
to the left and hits the potential well, both transmission and
reflection occur simultaneously, but most of the beam is trans-
mitted and only a fraction is reflected (see figures 6(a2)–(c2)).
In addition, under the symmetric potential barriers, the two
sub-waves are reflected and then converge again after hitting
the potential barrier wall, forming a parallelogram transmis-
sion pattern, and this process carries on periodic evolution (see
figures 6(a3)–(c3)). In the same way, when the beam propa-
gates in a single potential barrier, the left sub-beam meets the
potential barrier wall, and only a small part is transmitted. The
majority of the beam is reflected, and the reflected part on the
left has the same transmission direction as the right sub-beam.
The beam realizes basically non-diffraction transmission (see
figures 6(a4)–(c4)). Furthermore, when the incident beam is
transmitted in the mixture of a single well and a barrier (see
figures 6(a5)–(c5)), most of the left beams achieve the trans-
mission after encountering the potential well, while most of
the right beams are reflected due to the effect of the poten-
tial barrier. Moreover, we note from the illustrations that when
the beam tends to Pearcey distribution (see figures 6(a1)–(a5)),

there are many side lobes around the main lobe to participate in
the movement, but when the incident beam gradually tends to
the Gaussian distribution, the side lobe is significantly reduced,
and the effective width is narrower than that of Pearcey beam
(see figures 6(c1)–(c5)), which means that the beam width is
affected by the side lobe. It is also found that when the beam
propagates in the potential barrier, most of it is reflected and
only a little portion is transmitted, while when it travels in a
well, the situation is just the opposite. In other words, the abil-
ity of the total reflection of the potential barrier is stronger. One
important needs to be pointed out that this result also suits for
the case of optical control.

The reflectivity R of the beam as well as the corresponding
transmissivity T with the variation of potential height p and the
potential width d0 are displayed in figures 7(a) and (b), sep-
arately. From figure 7(a), we qualitatively observe that with
the continuous increasing of potential height, the reflectivity
increases rapidly, and approaches to a stable value, it closes
to 1. But the transmissivity drops dramatically and eventually
tends towards 0. It also can be seen from figure (a) that the
curve changes most obviously in the range of p from 0–5,
and when p > 5, the changes of R and T tend to be gentle.
Another major notable point is that the reflectance and trans-
mittance always obey the propagation law: T = 1 − R. From
figure 7(b), we derive the change is most pronounced when d0

is less than 0.5. Additionally, the transformation rate of figure
(b) is similar to that of figure (a). By varying the potential bar-
rier parameters, one can easily obtain the transmissivity and
reflectivity of the beam.
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Figure 6. The evolution of the PG beam under the combination of potential wells and barriers. Here, χ0 = 0.01, 0.1, 1 from top row to
bottom row. Symmetric double wells, a single well, symmetric double barriers, a single barrier, the combination of a single well and a single
barrier from left column to right column. The other parameters are μ = 0, p = 30, x0 = 15, d0 = 1, α = 1.02.

Figure 7. The reflectivity R and the transmissivity T varying with the potential barrier parameters. (a) Potential height; (b) potential width.
The other parameters are μ = 0, χ0 = 0.1, α = 1, x0 = 10, d0 = 1.

4. Conclusion

In this work, the propagation dynamics of the PG beam
with the Gaussian potential by utilizing the split-step Fourier
method are demonstrated, based on the FSE in the paraxial
approximation. In the free space, the PG beam evolves into two
sub-beams, whose bending angle is affected by the Lévy index.
However, it should be noted that the PG beam exhibits periodic
evolution under the Gaussian potential, and it can be changed
by adjusting the suitable potential parameters, exemplarily,
potential height and the potential width. Furthermore, the dis-
tribution factor is also an essential influencing element. When

it tends to 0, the beam shows the characteristics of the Pearcey.
In contrast, when it approaches 1, the properties of the Gaus-
sian beam will dominate. Chaos can also appear as the Lévy
index growing during the propagation.Subsequently, we probe
the transverse wavenumber μ, which can affect the period and
deflection direction of the PG beam. When μ = 0, the PG
beam has a similar cyclical evolution, except that, for μ > 0
and μ < 0, the sub-beams deflect in the opposite direction.
These results pave the way to future optical switch and light
routing. In addition, we discuss the transmission and reflection
of the beam under different combination of the potential well
and barrier, and discover that under the symmetrical barriers,
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the beam is easier to achieve total reflection. Additionally, the
transmission and reflection of the light beam follow a certain
rule. We believe that our results not only enhance the research
interest of FSE but also the fabrication of light modulators in
the future.
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