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Abstract: We consider a coupled nonlocal nonlinear Schrödinger equation (nNLSE) with
self-induced parity-time (PT) symmetric potential and investigate abundant amplitude-phase
modulated composite waves manifesting diverse evolution patterns. It is found that the coupled
nonlocal model can be decoupled into nNLSEs with self-induced PT symmetric potential under
certain constraints through a general linear transformation with amplitude and phase modulation.
Based on the exact solutions of the nNLSEs with self-induced PT potential, we study various
composite waves superposed by bright and/or dark soliton solutions, rogue waves, bright/dark
soliton and periodic soliton, and present the abundant evolution patterns under amplitude-phase
modulation. The results here only demonstrate the characteristics of limited superposed composite
waves. In fact, there exist infinite possible evolution patterns of composite waves due to the
arbitrary amplitude-phase modulation in coupled nonlocal nonlinear system with self-induced
PT symmetric potential.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In the past few years, the accurate integrable local models such as nonlinear Schrödinger equation
(NLSE) and Korteweg–de Vries equation play important roles in the study of the dynamics of
localized waves [1]. Based on these models, many exact soliton solutions have been found in the
fields of nonlinear fiber optics, hydrodynamics and Bose-Einstein Condensates [2–4]. In recent
years, the nonlocal nonlinear Schrödinger equation (nNLSE) was firstly proposed by Ablowitz
and Musslimani [5] and has attracted much attention from scholars at home and abroad [8–13].
The nNLSE is in the form of

iqt(x, t) = qxx(x, t) ± 2q(x, t)q∗(−x, t)q(x, t), (1)

where * stands for complex conjugation. Equation (1) is integrable and possesses a linear
pair formulation and an infinite number of conservation laws [5]. When x → −x, t → −t
and taking a complex conjugate in Eq. (1), the equation remains unchanged, which means
that it is parity-time (PT) symmetric. Indeed, Eq. (1) can be rewritten as a linear form of
iqt(x, t) = qxx(x, t) ± 2V(x, t)q(x, t), where V(x, t) = q(x, t)q∗(−x, t) is a self-induced nonlinear
potential and satisfies the PT symmetric condition, i.e. V(x, t) = V∗(−x, t) [5]. However, its PT
symmetry will be broken by the self-induced potential for any shift on the center of the solution
evolution [6]. It is worth noting that the solution evolution at current coordinate x depends on both
the current location x and the opposite location−x, which indicates a coupled relationship between
the soliton states at the positions of x and −x, reminding of quantum entanglement between
pairs of particles in quantum system [7,8]. Even though Eq. (1) is related to an unconventional
magnetic system [9], such a nonlocal model cannot be directly realized for concrete physical
settings [10]. However, the study on the nonlocal nonlinear model has clear physical motivation
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and significance [10]. The physical motivation originates from the relationship between it and its
realistic local counterpart based on the fact that Eq. (1) can be mapped to the local ones that
govern wave propagation in a variety of real physical systems. So far, Eq. (1) has been studied
extensively by inverse scattering transform [5], Darboux transformation [11–14], bilinear method
[15], or direct reduction approach [16] etc., and diverse soliton solutions have been obtained such
as breathing one-soliton solution [5], rogue waves with singular peaks [11], singular solutions
[12], breather solutions [13] and N-soliton solutions [14] etc. Especially, in contrast with standard
local NLSE, Eq. (1) admits the simultaneous existence of bright and dark soliton solutions under
the same sign of dispersion [6].

Following the integrable PT symmetric nNLSE (1), the coupled nNLSE with nonlocal self-
phase modulation (nSPM), cross-phase modulation (nXPM) and four-wave mixing (nFWM) was
paid extensive attention [17–19]. In the absence of nFWM, the coupled nNLSE can be reduced
to nonlocal Manakov model, and Bright-Bright, Dark-Dark and Bright-Dark solitons etc. have
been reported [17,18] and these solutions exhibit distinct wave structures due to the nonlocality.
With the effect of nFWM, special soliton solutions including Kuznetsov-Ma breather, Akhmediev
breather, and Peregrine soliton, soliton (breather) lattice were also demonstrated [19]. It is worth
mentioning that the conversion between Bright-Dark solitons and the breathers can happen under
the effect of nFWM [19]. It is well known that the FWM arises from the nonlinear response of
bound electrons in the medium to electromagnetic field [2], which can be expressed in the forms
of q2(x, t)q∗1(x, t)q2(x, t), q1(x, t)q∗2(x, t)q1(x, t) and so on under the phase matching [2,19–21]. As
an important nonlinear effect, the FWM can be applied to optical sampling, pulse generation,
wavelength conversion etc. [22]. Up to date, the research on the coupled nonlocal systems with
self-induced PT symmetric potential, especially including nFWM effect, is far insufficient. And
the evolution patterns of diverse composite waves in nonlocal systems have not been explored yet.

Motivated by the above works, here we focus on the coupled nNLSE including nSPM, nXPM
and nFWM and investigate abundant amplitude-phase modulated composite waves manifesting
diverse evolution patterns. With the help of an introduced general linear transformation and
the exact solutions of the nNLSE with self-induced PT potential, we study various composite
waves superposed by bright and/or dark soliton solutions, rogue waves, bright/dark soliton and
periodic solitons, and present the abundant evolution patterns under amplitude-phase modulation.
Here, the introduced linear transformation includes the information of amplitude and phase,
which implies one can achieve superposition of various amplitude-phase modulated solitons. It
is essentially different from the linear transformation mentioned in the previous Refs. [20,21].

The paper is organized as follows: in Sec. 2, we decouple the coupled nonlocal model into two
independent nNLSEs with self-induced PT symmetric potential through introducing a general
linear transformation with amplitude-phase modulation; in Sec. 3, we present the exotic patterns
of composite waves superposed by bright and/or dark soliton, rogue waves, bright/dark soliton
and periodic soliton, and explore the effect of amplitude-phase modulation on the evolution
patterns of a family of composite waves; in Sec. 4, the conclusion is summarized.

2. General linear transformation with amplitude-phase modulation

Here we consider a generalized coupled nonlocal NLSE involving nSPM, nXPM and nFWM
[18,19]:

iq1t(x, t) + σq1xx(x, t) + [aq1(x, t)q∗1(−x, t) + cq2(x, t)q∗2(−x, t)]q1(x, t) + dq2
2 (x, t)q∗1(−x, t) = 0,

(2a)
iq2t(x, t) + σq2xx(x, t) + [cq1(x, t)q∗1(−x, t) + aq2(x, t)q∗2(−x, t)]q2(x, t) + dq2

1 (x, t)q∗2(−x, t) = 0,
(2b)

where q1,2(x, t) represent complex fields of the variables x and t, σ is the coefficient of group
velocity dispersion (GVD), a, c and d denote the nSPM, nXPM and the nFWM effects,
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respectively. The last terms in Eqs. (2a) and (2b) are responsible for nonlocal coherent
coupling effect which is a special case of a more general FWM process [23]. It should be
pointed out that Eq. (2) can be used to describe the propagation of nonlinear waves in weakly
anisotropic or weakly birefringent medium since the term of degree of birefringence is not
included. The degree of birefringence, closely related to the group-velocity mismatch and
walk-off effect, can be neglected in the case of weak birefringence [23]. Oppositely, in the case
of high birefringence, the degree of birefringence and the walk-off effect resulting from group
velocity mismatch must be included in the theoretical model. Clearly, the coupled nonlocal
system (2) includes a self-induced nonlinear PT-symmetric potential for the single equation
[5], i.e.Vj(x, t) = aqj(x, t)q∗j (−x, t) + cqj±1(x, t)q∗j±1(−x, t), (j = 1, 2 corresponding ‘+’ and ‘-’,
respectively) that satisfies the PT-symmetric condition Vj(x, t) = V∗

j (−x, t). It is noted that through
the variable transformations x = ix̂, t = −t̂, q1,2(x, t) = û1,2(x̂, t̂) [24], Eq. (2) can be converted to
its local counterpart, i.e.

iûjt̂(x̂, t̂)+σûjx̂x̂(x̂, t̂)−[aûj(x̂, t̂)û∗j (x̂, t̂) + cûj±1(x̂, t̂)û∗j±1(x̂, t̂)]ûj(x̂, t̂)−dû2
j±1(x̂, t̂)û∗j (x̂, t̂) = 0, (3)

(j = 1, 2, corresponding ‘+’ and ‘-’, respectively), which govern the dynamics of two coherently
coupled waves in isotropic nonlinear medium [25–27]. Similarly, Eq. (2) can be recovered
through reverse variable transformations x̂ = −ix, t̂ = −t, û1,2(x̂, t̂) = q1,2(x, t) that describe the
nonlinear wave propagation in real physical systems [10]. This implies that studying on the
nonlocal model (2) has clear physical significance.

To seek the phase-amplitude modulated solutions of Eq. (2), we introduce a general linear
transformation of nonlinear wave superposition

q1(x, t) = A1eiθ1ϕ1(x, t) + A3eiθ3ϕ2(x, t), (4a)

q2(x, t) = A2eiθ2ϕ1(x, t) − A4eiθ4ϕ2(x, t), (4b)

where ϕ1,2 is arbitrary function of x and t, and the coefficients Aj (j = 1, 2, 3, 4) is any non-zero real
constant, and θj (j = 1, 2, 3, 4) ranges from 0 to 2π. That is to say, amplitude-phase modulation
in the linear transformation (4) is arbitrary, which implies that the linear transformation (4)
covers the linear transformations in Refs. [20,21]. Namely, the linear transformation (4) is much
more general and it could theoretically be extended to the other systems. Inserting the linear
transformation (4) into Eq. (2) and after a series of complicated calculations (See Appendix B
for details), it is found that under the certain constraints a = d = c/2 (indicating the positive
coherent coupling [28]) A2 = eil1πA1, A4 = eil2πA3, θ2 − θ1 = k1π, θ4 − θ3 = k2π, where l1,2 and
k1,2 are integers, Eq. (2) can be decoupled into

iϕjt(x, t) + σϕjxx(x, t) + γjϕj(x, t)ϕ∗j (−x, t)ϕj(x, t) = 0, (j = 1, 2) (5)

where γ1 = 2cA2
1 and γ2 = 2cA2

3. Equation (5) is a nNLSE with self-induced PT potential and
supports numerous exact soliton solutions [11–16,29–32], such as bright, dark solitons [6], rogue
waves [11], periodic solitons [13] etc. We will show them in Appendix A in detail for convenience.
Thus, through linear transformation (4), rich composite waves of Eq. (2) can be obtained with the
aid of diverse soliton solutions of Eq. (5). It should be pointed out that the linear transformation
(4) is much more general than the ones reported in Refs. [20,21] (in which all coefficients of
ϕj(x, t) are fixed to special real constants). In fact, the real coefficients Aj and the phases θj in the
linear transformation (4) will give rise to superposition of various amplitude-phase modulated
solitons of Eq. (5), which implies one can achieve the kaleidoscopic complex soliton solutions of
Eq. (2) by the jointly modulated amplitude-phase solutions of Eq. (5).
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According to the above constraints, the linear transformation (4) can be further rewritten as

q1(x, t) = A1eiθ1ϕ1(x, t) + A3eiθ3ϕ2(x, t), (6a)

q2(x, t) = A1ei(θ1+p1π)ϕ1(x, t) − A3ei(θ3+p2π)ϕ2(x, t), (6b)

where pj = lj + kj (j = 1, 2). It is easy to see that different integer pj leads to different superposed
solution q2(x, t) even though for the same solution ϕj(x, t) of Eq. (5), which means that there exist
various kinds of linear transformations composed of the same (6a) and different (6b). According
to different values of pj, Eq. (6b) can be divided into four cases: Case i) when p1 and p2 are even
and odd numbers, respectively, Eq. (6b) reads q2(x, t) = A1eiθ1ϕ1(x, t) + A3eiθ3ϕ2(x, t), that is
q1(x, t) = q2(x, t), i.e. q1 and q2 are equal in amplitude and in phase; Case ii) when p1 and p2
are odd and even numbers, respectively, then q2(x, t) = −A1eiθ1ϕ1(x, t) − A3eiθ3ϕ2(x, t), that is
q1(x, t) = −q2(x, t), namely, q1 and q2 are equal in amplitude but out of phase; Case iii) when
p1 and p2 are odd numbers, then q2(x, t) = −A1eiθ1ϕ1(x, t) + A3eiθ3ϕ2(x, t); Case iv) when p1
and p2 are even numbers, then q2(x, t) = A1eiθ1ϕ1(x, t) − A3eiθ3ϕ2(x, t). In combination with
Eq. (6a), for Case iii) and Case iv), the two components q1 and q2 have different amplitudes
and phases, moreover, their amplitudes and phases can be freely modulated since A1, A3, θ1
and θ3 are arbitrary. This leads to a series of different linear transformations that can achieve
diverse amplitude-phase modulated composite waves of coupled nNLSE (2) with PT symmetric
potential, which is much more general than the ones with fixed coefficients for local counterparts
[20,21]. Such amplitude-phase modulated composite waves in coupled nonlocal system with
PT symmetric potential have never been studied in literatures. In order to demonstrate the
amplitude-phase modulation, in this paper we will mainly explore the linear transformation
described by Eq. (6a) and Case iv. In this case, in order to show the amplitude-phase modulation
more clearly, we rewrite the linear transformation as

qj(x, t) = (A1eiθ1 , (−1)j+1A3eiθ3 )
⎛⎜⎝
ϕ1(x, t)

ϕ2(x, t)
⎞⎟⎠ , j = 1, 2. (7)

It is worth noting that the values of A1, A3, θ1 and θ3 are arbitrary, which indicates that q1 and q2
are the composite waves of ϕ1 and ϕ2 with arbitrary amplitude-phase modulation. In other words,
different amplitude-phase modulation of ϕ1 and ϕ2 follows different linear transformation, which
results in various composite waves of Eq. (2). Table 1 lists several modulation parameters eiθj

corresponding to special values of θj. The modulation parameter space for linear transformations
(7) is shown by the all plane in Fig. 1, where the special points A-H respectively correspond to
the linear transformations with the modulation parameters listed in Table 1. For example, A and
E correspond to the linear transformation of θ1 = b1π,θ3 = b2π with b1 and b2 being integers,

qj(x, t) = ±(A1, (−1)j+1A3)
⎛⎜⎝
ϕ1(x, t)

ϕ2(x, t)
⎞⎟⎠ , j = 1, 2 (8)

Table 1. The phase θj and the corresponding modulation parameters eiθj

θj 0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4

Ajeiθj Aj Aj
(︂

1√
2
+ i 1√

2

)︂
iAj Aj

(︂
i 1√

2
− 1√

2

)︂
−Aj −Aj

(︂
1√
2
+ i 1√

2

)︂
−iAj Aj

(︂
1√
2
− i 1√

2

)︂
Mareeswaran et al. and Jia et al. have obtained and investigated nonlinear localized composite

waves of coherently coupled NLSE through linear transformation (8) with ‘+’ and fixed parameters
A1 = A3 = 1/2 or A1 = A3 = 1/

√
2 [20,21]. It should be pointed out that the linear transformation
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(8) is one special case of the linear transformation (7) which is much more general than the
reported ones [20,21].

With the help of linear transformation (7) that contains information of arbitrary amplitude and
phase, one can obtain a family of composite waves consisting of the superposition of two exact
solutions ϕ1,2 of Eq. (5) that admits exact bright, dark [6], rogue wave [11] and lattice solitons
[13] etc. We will discuss the interesting composite waves with amplitude-phase modulation in
the coupled nonlocal PT symmetric system (2) based on the general linear transformation (7) as
below. For brevity, we will define the new composite waves superposed of two nonlinear waves X
and Y as X-Y. For example, BS-DS, BS-BS and DS-DS represent the superposition of bright-dark
soliton (BS-DS), bright-bright soliton (BS-BS) and dark-dark soliton (DS-DS), respectively.

Fig. 1. The modulation parameter space corresponding to the modulation parameters listed
in Table 1 for linear transformations (7)

3. Composite waves based on amplitude-phase modulation

3.1. Composite bright and/or dark waves

In contrast to the local NLSE that supports either bright or dark soliton [5], Eq. (5) admits
simultaneously both the bright and dark soliton solutions [Eq. (10) and Eq. (11)] under the same
constraints [6]. This allows us to discuss the composite waves superposed by bright and dark
solitons in coupled nonlocal PT symmetric system (2). Following the linear transformation (7),
the amplitude of BS-DS can be expressed as

|q1,2 | = [A2
1 |ϕ1(x, t)|2 + A2

3 |ϕ2(x, t)|2 ± 2A1A3 |ϕ1(x, t)| |ϕ2(x, t)| cos(∆θ + φ1 − φ2)]
1/2, (9)

where ‘±’correspond to q1,2, |ϕ1(x, t)| = |η1sech(η1x)| and |ϕ2(x, t)| = |µ2 tanh(µ2x)| are respec-
tively the amplitudes of bright [Eq. (10)] and dark [Eq. (11)] soliton solutions, φ1 = η12t/2 and
φ2 = − µ2

2t are respectively the phases of ϕ1 and ϕ2, where η1, µ2 are the amplitudes of bright and
dark solitons, respectively, and ∆θ = θ1 − θ3 denotes the relative phase between the bright and
dark solitons. As indicated above, A1,3 and θ1,3 are arbitrary, hence the amplitude (9) of BS-DS
can be modulated by the amplitudes and phases. Figure 2 shows the evolutions of the BS-DS
under different phase-modulation ∆θ at a given equal amplitude parameters A1 = A3. It is clear
to see that the BS-DS appears alternating patterns of bright and dark spots, and the components
q1 and q2 have the complementary characteristics, which results from the conservation of energy.
With the increase of the relative phase ∆θ , both bright and dark spots located at t= 0 move along
the negative t direction till ∆θ = π, and the bright (dark) spots at t= 0 gradually evolve into the
dark (bright) ones, as shown in Figs. 2(a) to 2(d).

Figures 3(a) and 3(b) depict the evolution of BS-DS at a fixed relative phase ∆θ = π/4. For
different amplitude parameters η1 and µ2, BS-DS behaves bright or dark soliton appearing
alternately the ellipse-shaped spots on two sides of the axis of x= 0. And the ratio of η1 to µ2 is
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Fig. 2. Composite waves BS-DS with different phase modulation at a given equal amplitude
parameters A1 = A3 = 1: (a) ∆θ = 0; (b) ∆θ = π/4; (c) ∆θ = π/2; (d) ∆θ = π; (e)
∆θ = 3π/2; (f) ∆θ = 2π; the other parameters are η1 = 1, µ2 = 1,respectively.

larger than 1, the bright soliton dominates the evolution of the composite wave [see Fig. 3(a)],
while the ratio is smaller the dark soliton dominates its revolution [see Fig. 3(b)]. In addition, by
changing the amplitudes A1 and A3 of the bright and dark solitons can achieve the conversion of
the dominated role as well.

Fig. 3. Composite waves of (a-b) BS-DS, (c) BS-BS, (d) DS-DS with a fixed relative phase
∆θ = π/4 and equal amplitudes A1 = A3 = 1. Other parameters are (a) η1 = 3, µ2 = 1; (b)
η1 = 1, µ2 = 1.5; (c) η1 = 2, η2 = 1; (d) µ1 = 1, µ2 = 1.5.

In fact, in accordance with the expression (9) of amplitude of q1,2, regardless of the forms of the
solution ϕ1,2, the composite wave always evolves periodically except for ∆θ = φ2(x, t) − φ1(x, t),
but the period T is 4π/(η12 + 4µ2

2), 4π/(η12 − η2
2) and 2π/(µ2

2 − µ1
2) for BS-DS, BS-BS

(η1 ≠ η2) and DS-DS (µ1 ≠ µ2), respectively. Figures 3(c) and 3(d) depict the evolutions of the
composite waves of BS-BS and DS-DS, respectively. It can be seen from Fig. 3(c) that BS-BS
exhibits a breathing behavior like the Kuznetsov-Ma breather [13] when the condition η1 ≠ η2 is
satisfied. For the DS-DS composite waves, its background periodically evolves with the period
2π/(µ2

2 − µ1
2) keeping its dip invariant when µ1 ≠ µ2, which is shown in Fig. 3(d). Taking

BS-BS as example, Fig. 4 plots the relation of the phase and amplitude of BS-BS wave with the
change of relative phase ∆θ . It is clear to see that for different periods T, with the increase of
∆θ , the phases of q1 and q2 follow the same law but with different magnitudes [see Fig. 4(a1)
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and 4(a2)], while their amplitudes are opposite [see Fig. 4(b1) and 4(b2)]. Also, as the period T
decreases, the amplitudes of q1 and q2 increase while the phases decrease.

Fig. 4. The relations between relative phase ∆θ and phase and amplitude of composite wave
BS-BS at x= 0. The parameters for (a1) and (b1) are identical to the ones in Fig. 1(c), and
the parameters for (a2) and (b2) are η1 = 6, η2 = 1.

3.2. Composite rogue waves

Rogue waves in coupled nonlocal systems are rarely studied, especially in nonlocal PT symmetric
system. In this section, we investigate composite rogue waves superposed by singular (collapsing)
rogue waves [Eq. (13)] under amplitude-phase modulation (7), and present some novel patterns
and interesting evolution properties. Figure 5 depicts when the relative phase ∆θ = θ1 − θ3 is
different, the evolution of the composite rogue wave, named as RW-RW, superposed by two
second-order rogue waves with different parameters s1 = 0, r1 = −30 and s2 = 0, r2 = 30, where
s1,2 and r1,2 are free real parameters. It is found that the composite RW-RW can form a hexagon
shape consisted of six bright spots corresponding to six collapsed peaks [11]. It can be seen from
Fig. 5 that as the relative phase ∆θ increases, the intensity of the background wave of q1 changes
from strong to weak and then back to strong again, while for the background wave change of q2
is opposite. Also, the intensity patterns of q1 and q2 exchange at ∆θ = π [see Figs. 5(c1) and
5(c2)], and both q1 and q2 evolve at the period of 2π[see Figs. 5(a1), 5(e1) and 5(a2), 5(e2)].

RW-RW with a certain relative phase ∆θ = π/4. It is clear to see that by changing parameters
of the rogue wave, the collapsed position of the composite RW-RW can be regulated and various
patterns such as triangular, rectangular, square and hexagon are formed, as shown in Figs. 6(a) to
6(d), respectively. It is also noted that in Figs. 6(a), 6(b) and 6(d), the two components q1 and
q2 of the composite RW-RW occur collapses at six positions, while in Fig. 6(c), they appear
collapses at five positions. Because in Fig. 6(c) two singular peaks overlaps.

3.3. Diverse soliton patterns

The diversity of composite waves of Eq. (2) comes not only from the abundance of amplitude-
phase modulation parameters, but also from the fact that ϕ1,2 could be any solutions of Eq. (5).
Here, based on the simplest bright/dark soliton [Eqs. (10) and (11)] and periodic soliton (which
includes some parameters, where α2 is related to the period, and β2, v2, f2 are intermediate
parameters) [Eq. (12)] of Eq. (5), the evolutions of DS-PS and BS-PS are presented in Fig. 7.
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Fig. 5. Composite RW-RW for different amplitude-phase modulation: (a)∆θ = 0;(b)∆θ =
π/2; (c) ∆θ = π; (d) ∆θ = 3π/2; (e) ∆θ = 2π. Other parameters are s1 = 0, r1 = −30, s2 =
0, r2 = 30, A1 = A3 = 1.

Fig. 6. Composite waves RW-RW with diverse patterns for a fixed relative phase ∆θ = π/4
and equal amplitudes A1 = A3 = 1: (a)s1 = 6.9, r1 = −100, s2 = −4, r2 = 100; (b) s1 = 0,
r1 = −30, s2 = 0, r2 = 30; (c)s1 = 0, r1 = −7, s2 = 0, r2 = 30; (d)s1 = 1, r1 = −50,
s2 = −1, r2 = 50.

Due to the energy conservation of q1 and q2, only the evolution of q1 is shown. It is clear to
see that both BS-PS and DS-PS evolve periodically. Comparing the first column to the second
column, or the third column to the fourth column, it is found that with the increase of η1 or µ1,
the shapes of the spots along x= 0 change significantly, resulting from the stronger amplitudes of
bright or dark solitons. Comparing the first column to the third column, or the second column
to the fourth column, we find that as α2 increases, the intensity of the waves with the form of
fringes becomes weaker and the period becomes smaller. Meanwhile, the number of bright spots
along x= 0 increases as α2 increases.
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Fig. 7. The component q1 of diversely modulated soliton patterns of (a)-(d)BS-PS, (e)-
(h)DS-PS: (a)η1 = 4, α2 = 0.7; (b)η1 = 10, α2 = 0.7; (c)η1 = 4, α2 = 1.2;(d)η1 = 10,
α2 = 1.2;(e) µ1 = 4, α2 = 0.7; (f)µ1 = 10, α2 = 0.7,(g)µ1 = 4, α2 = 1.2,(h)µ1 = 10,
α2 = 1.2. Other parameters:v2 = β2 = 0, f2 = 1 −

√
3/6 log(2 +

√
3).

4. Conclusion and discussion

In this paper, we considered a generalized coupled nNLSE with nSPM, nXPM and nFWM, which
shows the physical significance by mapping nonlocal system into local counterpart. With the help
of an introduced general linear transformation, the coupled nonlocal model can be decoupled
into two nNLSEs with self-induced PT symmetric potential under appropriate constraints. As
the linear transformation includes abundant information of amplitude and phase modulation,
diverse evolution patterns of the composite waves in coupled PT-symmetric nonlocal system can
be achieved. Several composite waves, superposed by bright and/or dark soliton solutions, or
two rogue waves, or bright/dark soliton and periodic breather soliton, are exhibited as examples.
Especially, the exotic evolution patterns of composite wave RW-RW in nonlocal system are also
demonstrated by the superposition of rogue waves under amplitude-phase modulation. The
results presented here are difficult to achieve in the local system.

Appendix A: explicit exact solutions of nNLSE (5)

1. Bright and dark soliton [6] and periodic soliton [13] in anomalous GVD focusing nNLSE with
γ = 1, σ = 1/2, which are respectively in the form of

ϕj = ηjsech(ηjx)eiηj
2t/2, j = 1, 2; (10)

ϕj = µj tanh(µjx)e−iµj
2t, j = 1, 2; (11)

ϕj =
cos(βj) cosh(B1 + 2αj) + sinh(αj) sinh(A1 − 2iβj)

cos(βj) cosh(B1) − sinh(αj) sinh(A1)
eit/2, j = 1, 2, (12)

with A1 = 2 sinh(αj)(fj − ix), B1 = −2i sinh(αj)[cosh(αj)t + vj].
Here ηj and µj in Eqs. (10) and (11) are related to bright and dark soliton amplitude, respectively,

and αj, βj, vj, fj in Eq. (12) are the same as the corresponding parameters in Ref. [13].
2. Rogue wave in normal GVD focusing nNLSE γ = −2, σ = −1 [11]:

ϕj = e−2it

[︄
1 +

3(2x − 4it̃ + 1)2

4(x − 2it̃)3 − 3(x − 6it̃ + 2is̃1)

]︄
, j = 1, 2, (13)

where s̃1 = rj − sj, t̃ = t − sj/2, s̃1 is a single nonreducible real parameter after the parameter sj is
removed by time translation, rj is a free real parameter.
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Appendix B: decoupling process

Inserting the linear transformation (4) into Eq. (2), one can obtain the following equations

iA1eiθ1ϕ1t(x, t) + iA3eiθ3ϕ2t(x, t) + σA1eiθ1ϕ1xx(x, t) + σA3eiθ3ϕ2xx(x, t)

+B1ϕ
2
1 (x, t)ϕ∗1(−x, t) + B3ϕ

2
2 (x, t)ϕ∗2(−x, t) + C1ϕ1(x, t)ϕ2(x, t)ϕ∗1(−x, t)

+D1ϕ1(x, t)ϕ2(x, t)ϕ∗2(−x, t) + E1ϕ
2
2 (x, t)ϕ∗1(−x, t) + F1ϕ

2
1 (x, t)ϕ∗2(−x, t) = 0,

(14a)

iA1eiθ1ϕ1t(x, t) − iA3eiθ3ϕ2t(x, t) + σA1eiθ1ϕ1xx(x, t) − σA3eiθ3ϕ2xx(x, t)+

B2ϕ
2
1 (x, t)ϕ∗1(−x, t) − B4ϕ

2
2 (x, t)ϕ∗2(−x, t) − C2ϕ1(x, t)ϕ2(x, t)ϕ∗1(−x, t)+

D2ϕ1(x, t)ϕ2(x, t)ϕ∗2(−x, t) + E2ϕ
2
2 (x, t)ϕ∗1(−x, t) − F2ϕ

2
1 (x, t)ϕ∗2(−x, t) = 0,

(14b)

where B1, 3 = aA3
1,3eiθ1,3 + cA1,3A2

1,3+1eiθ1,3 + dA1,3A2
1,3+1ei(2θ1,3+1−θ1,3), B2,4 = aA3

2,4eiθ2,4 +

cA2,4A2
2,4−1eiθ2,4 + dA2,4A2

2,4−1ei(2θ2,4−1−θ2,4), C1 = 2aA2
1 A3eiθ3 + cA2

2A3eiθ3 − cA1A2A4ei(θ1+θ4−θ2) −

2dA1A2A4ei(θ2+θ4−θ1), C2 = 2aA2
2A4eiθ4 +cA2

1A4eiθ4 −cA1A2A3ei(θ2+θ3−θ1)−2dA1A2A3ei(θ1+θ3−θ2),
D1 = 2aA1A2

3eiθ1 + cA1A2
4eiθ1 − cA2A3A4ei(θ2+θ3−θ4) − 2dA2A3A4ei(θ2+θ4−θ3), D2 = 2aA2A2

4eiθ2 +

cA2A2
3eiθ2−cA1A3A4ei(θ1+θ4−θ3)−2dA1A3A4ei(θ1+θ3−θ4), E1 = aA1A2

3ei(2θ3−θ1)−cA2A3A4ei(θ3+θ4−θ2)+

dA1A2
4ei(2θ4−θ1), E2 = aA2A2

4ei(2θ4−θ2)−cA1A3A4ei(θ3+θ4−θ1)+dA2A2
3ei(2θ3−θ2), F1 = aA2

1A3ei(2θ1−θ3)−

cA1A2A4ei(θ1+θ2−θ4)+dA2
2A3ei(2θ2−θ3), F2 = aA2

2A4ei(2θ2−θ4)−cA1A2A3ei(θ1+θ2−θ3)+dA2
1A4ei(2θ1−θ4).

Let the coefficients of other nonlinear terms except for terms ϕ2
1 (x, t)ϕ∗1(−x, t) and ϕ2

2 (x, t)ϕ∗2(−x, t)
be 0, and the coefficients of ϕ2

1 (x, t)ϕ∗1(−x, t) and ϕ2
2 (x, t)ϕ∗2(−x, t) terms in Eq. (14a) and Eq. (14b)

be equal, then the coupled Eq. (2) can be decoupled into Eq. (5) with the corresponding constraint
conditions.
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