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Abstract: Color split-focal plane polarization imaging systems are composed of image sensors
with a color polarization filter array (CPFA). The noise generated during image acquisition
leads to incorrect estimation of the color polarization information. Therefore, it is necessary to
denoise CPFA image data. In this study, we propose a CPFA block-matching and 3D filtering
(CPFA-BM3D) algorithm for CPFA image data. The algorithm makes full use of the correlation
between different polarization channels and different color channels, restricts the grouping of
similar 2D image blocks to form 3D blocks, and attenuates Gaussian noise in the transform
domain. We evaluate the denoising performance of the proposed algorithm using simulated and
real CPFA images. Experimental results show that the proposed method significantly suppresses
noise while preserving the image details and polarization information. Its peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) indicators are superior to those of the other existing
methods. The mean values of the PSNR and SSIM of the degree of linear polarization (DoLP)
color images calculated through CPFA image interpolation can be increased to 200% and 400%,
respectively, by denoising with the proposed method.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The main physical properties of light are the intensity, wavelength, coherence, and polarization.
Among these, the human vision system can easily perceive intensity and wavelength information
but cannot directly distinguish polarization. As physical properties such as those related to the
object shape and surface roughness can be inferred from polarization information [1], it has
been extensively applied in the fields of material classification [2], image-to-fog [3], 3D shape
reconstruction [4], and biomedical imaging [5]. Polarization imaging systems can be classified
as division of time (DoT) [6], division of amplitude, division of aperture, and division of focal
plane (DoFP) systems [7]. The DoFP polarization imaging system has obvious advantages in
terms of the system volume and imaging speed, which is the focus of research in the field of
polarization imaging. Recently, newly released split-focal plane color polarizing cameras such
as the FLIR BFS-U3-15S5PC and PHX050S cameras have produced more detailed and richer
red-green-blue color polarization images than grayscale polarizing images. These cameras are
equipped with an RGGB Bayer filter and directional polarization filter, which can form a 16-pixel
computing unit as a color polarization filter array (CPFA), as shown in Fig. 1.

In the imaging process of a color focal plane polarization camera, noise interference from the
outside world and the device itself, which generally includes noise from many different sources, is
inevitable. As the noise characteristics tend to follow a Gaussian distribution when the number of
noise sources increases, and the Gaussian noise model is easy to use in the design and analysis of
the denoising algorithm [8], this study mainly examines the effect of Gaussian noise. The presence
of noise degrades the image quality and produces spurious polarization information during
interpolation reconstruction [9,10]. The color polarization interpolation algorithm [11–13]
is crucial for obtaining full-resolution color polarization images. It mainly restores all the
12-channel ((R, G, B) ∗ (0◦, 45◦, 90◦, 135◦)) images from a CPFA image dataset. However, these
interpolation algorithms are all applied on the premise of noiseless CPFA images. Although
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Fig. 1. Color focal plane polarized camera: (a) SONY IMX250MYRCMOS sensor, and
RGGB Bayer filter and directional polarization filter. (b) Color polarization filter array
(CPFA) with a 16-pixel computing unit.

denoising can be performed using denoising methods for color images after interpolation, it is
more difficult to remove noise because interpolation changes the noise characteristics. A similar
problem exists in grayscale DoFP images obtained using a directional polarization filter. Existing
gray DoFP image denoising algorithms include those based on principal component analysis
(PCA) [14], polarimetric denoising residual dense networks (PDRDN) [15], and block-matching
and 3-D filtering (DoFP-BM3D) [16]. The PCA denoising algorithm utilizes reduction and linear
least mean square errors to denoise in the PCA domain. The algorithm sacrifices the image
details and edge information and is unsuitable for considerable Gaussian noise. The PDRDN
denoising algorithm is suitable for image restoration in complex and high-noise environments.
The DoFP-BM3D denoising algorithm is a universal DoFP image denoising method that can
suppress most of the noise in an image, although certain image edge details are sacrificed. All
these algorithms, however, are based on the DoFP image sensor. The CPFA image sensor adds
color channels and changes the original image array format, which means these algorithms cannot
be directly applied to CPFA image denoising. Qiu et al. first considered the influence of noise
in the reconstruction process of color polarization images [17] and proposed an algorithm for
solving the Stokes vector of color polarization images by solving an inverse problem within the
alternating direction method of multipliers framework. However, as the main purpose of the
algorithm is to reconstruct the Stokes vector, its denoising ability is limited. Therefore, it is
only suitable for CPFA image data under low-intensity noise. In this study, we first prove the
correlation between the newly-added color channel and the polarization direction channel, and
we then propose a CPFA image denoising algorithm, CPFA-BM3D, based on block-matching and
3-D filtering (BM3D) [18]. The proposed algorithm makes full use of the correlation between
the four polarization directions and three-color channels. As shown in Fig. 1(b), based on the
super pixel, it utilizes the nonlocal self-similarity of the CPFA image and the correlation of the
polarization and color information for finding similar blocks to form 3D blocks and subsequently
performs 3D transformation and collaborative filtering. The performance of the denoising method
is evaluated using the degree of linear polarization (DoLP) images reconstructed from simulated
and real CPFA images. The obtained results establish that the proposed algorithm significantly
improves the visual effect, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM)
[19].
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The rest of the paper is organized as follows. In Section 2, we first prove the existence of
correlation between the 12 channels in CPFA image data. We then introduce the block matching
and 3D filtering (CPFA-BM3D) algorithm for CPFA image data and the algorithm parameter
settings. In Section 3, we report our experimental results and conduct a comparison against
competing denoising techniques in the literature. In Section 4, we make some concluding remarks
about this work and future research.

2. Method

2.1. Correlation between color polarization channels

Interchannel correlation implies strong correlation between the high-frequency (texture or edge)
components of different channels. The CPFA sensor contains not only different color channels
(R, G, and B channels) but also different polarization channels (0◦, 45◦, 90◦, and 135◦ channels),
which are arranged according to certain rules. By fully utilizing the correlation between these
channels, excellent results can be achieved when the BM3D algorithm is applied in CPFA image
data denoising.

We used the color polarization dataset in [17] as the test set. This dataset contains 40 carefully
calibrated polarization scenes, each containing four RGB color images in the polarization
directions of 0◦, 45◦, 90◦, and, respectively (detailed in Section 3.1.1). We selected 12 channels
((R, G, B) ∗ (0◦, 45◦, 90◦, 135◦)) in the center region of the image, which excluded the 15 outermost
pixels, to avoid the boundary effect induced by the registration step used on the raw images.
Subsequently, the Pearson correlation coefficient (PCC) [20] was used to evaluate the correlation
between channels, and the 40 scenarios in the dataset were averaged, as formulated by Eq. (1):

PCC[Cu, Cv] =

∑︁
p ((Cu

p − µ
u)(Cv

p − µ
v))√︂∑︁

p (Cu
p − µ

u)2
√︂∑︁

p (Cv
p − µ

v)2
. (1)

where Cu and Cv refer to two different channels, (u, v) ∈ {1, . . . , 12}2.
Figure 2 shows the PCC results among 12 channels of the color polarization image. In the

case of the R channel, the correlation between the four channels with different polarization
(R0◦ , R45◦ , R90◦ , R135◦ ) is higher than those between these four channels and the other eight chan-
nels ((G, B) ∗ (0◦, 45◦, 90◦, 135◦)). In the case of the B or G color channel, considering the G0◦

channel as an example PCC(G0◦ , B0◦ )> PCC(G0◦ , G45◦ )> PCC(G0◦ , B45◦ )> PCC(G0◦ , G135◦ )>
PCC(G0◦ , B135◦ )> PCC(G0◦ , G90◦ )> PCC(G0◦ , B90◦ ) shows that the correlation is maximum
when the polarization channels are the same (PCC(G0◦ , B0◦ ) is maximum). When the polar-
ization channels differ, the correlation between channels of the same color is greater than that
between channels of different color (e.g., PCC(G0◦ , G45◦ )>PCC(G0◦ , B45◦ )). In general, for the
12 channels, the least PCC is PCC(R0◦ , G90◦ )=0.9738, and the average PCC is 0.9916 (greater
than 0.8 is correlated), indicating that the 12 channels have high correlation, and the correlation
between channels can be fully utilized in CPFA image denoising.

2.2. CPFA - BM3D algorithm

The CPFA image denoising algorithm based on BM3D (CPFA-BM3D) is a 3D transform domain
filtering algorithm for denoising, utilizing the similarity between image blocks and the correlation
between channels. It includes two main steps: basic estimation and final estimation. Each
step includes image block grouping, 3D collaborative filtering, and aggregation, where 3D
collaborative filtering uses hard-threshold filtering and Wiener filtering. The denoising process
is illustrated in Fig. 3.

2.2.1. Basic estimation

(1) Image block grouping
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Fig. 2. Correlation between 12 channels in the color polarization image.

Fig. 3. CPFA-BM3D denoising algorithm flow chart.
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We first divide the noisy CPFA image into reference blocks ZXR sized Nht
1 × Nht

1 in suitable
steps. In natural images, there is a correlation between pixels of each reference block. The
presence of strong correlation between the color polarization channels has been proven, so a
certain correlation between the pixels of each reference block of the CPFA image is also expected.
To take full advantage of the polarization information and the correlation between different
channels, each reference block includes pixels of at least four polarization channels and three
color channels ((R, G, B) ∗ (0◦, 45◦, 90◦, 135◦)), as shown in Fig. 1(b).

Further, we search for the number of matching blocks in search range nht × nht.When the
distance between the matching block and reference block is less than the fixed threshold τht

match,
the matching block is considered as a similar block ZXi, and the set of ZXi is Sht

XR. The l2 norm is
used for calculating the similarity, as depicted in Eq. (2):

d(ZXi, ZXR) =
| |ZXR − ZXi | |

2
2

(Nht
1 )

2 . (2)

where d(ZXi, ZXR) is the l2 distance between ZXR and ZXi, (Nht
1 )2, is the size of the reference block

in the basic estimation step, and | | · | |2 is the l2 norm.
When blocks with different colors and different polarization orientation configurations are

combined and thresholded (for example, as shown on the left of Fig. 4(a), when blocks on the
upper-left corner of the R90◦ sample are combined with blocks on the upper-left corner of the
G0◦ sample or of the B90◦ sample), severe checkerboard artifacts are observed in regions with
low chromatic aberration and less polarization information in the denoised DoLP color image,
as shown on the right of Fig. 4(a). This is because when finding similar blocks, two image
blocks of different arrays with few differences in the color and polarization information have
similar pixel values, resulting in similar values of the l2 distance. These are judged as similar
blocks, causing a deviation in the reference block estimate. To solve this problem, we limit the
grouping to configuration blocks with the same color and polarization direction (when the block
on the upper-left corner of the R90◦ sample is combined with that on the upper-left corner of
the R90◦ sample), as shown on the left of Fig. 4(b). From the image on the right of Fig. 4(b),
when the array configuration of similar blocks is considered to correspond to the color as well
as polarization channels, the denoised DoLP color images are of better quality and retain more
image details and polarization information.

Fig. 4. (a) (left) Groups of blocks with different colors and different polarization channel
configurations and (right) denoised DoLP images (σ = 20). (b) (left) Groups of blocks with
the same color and the same polarization channel configurations and (right) denoised DoLP
images (σ = 20).
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All similar blocks in Sht
XR are sorted in descending order of similarity, and the top Mht similar

blocks are used to build the similarity group ZSht
XR

.

(2) Collaborative hard-thresholding

Collaborative filtering in basis estimation is noise attenuation by hard thresholding in the 3D
transform domain. The applied 3D linear transformation is called τht

3D, which is a portable 3D
transformation. Wavelet transform or DCT 2D transform is performed first, followed by 1D
Hadamard transform. The formula for collaborative hard-threshold filtering is as follows:

⌒

YSht
XR
= τht−1

3D (γ(τht
3D(ZSht

XR
))). (3)

where τht−1
3D represents the inverse transformation of τht

3D and γ(·) represents the synergistic
hard-threshold filter factor.

When collaborative filtering is applied to ZSht
XR

composed of blocks with the same color and
channel configuration, 3D transformation and noise removal is realized more effectively. This is
because ZSht

XR
has two unique advantages:

a) There is a certain correlation between pixels within each similar block.

b) There is a certain correlation among the corresponding pixels of all the similar blocks
in ZSht

XR
, which we improved by setting a similar block array configuration with the same

channel.

Collaborative filtering in basic estimation and final estimation utilizes these two types of
correlation to generate a sparse representation of more real signals in similar block groups. Such
sparse representation is highly effective in attenuating noise, retaining the signal characteristics,
and realizing a more accurate filtering effect. Here, it is noted that filtering is applied to a 3D
group containing all the polarization information and color information samples. Therefore, our
method takes advantage of the correlation between all the channels.

Because multiple estimates can be found for the same pixel in each similar group, we assign

smaller weights to noisy block estimates, and the basic estimate of each reference block is
⌒

Y
ht,XR
xm .

(3) Aggregation

Finally, the basic estimation image is obtained by clustering. The aggregation process can be
expressed as follows:

⌒y
basic

(x) =

∑︁
XR∈X

∑︁
xm∈Sht

XR
wht

XR
⌒

Y
ht,XR
xm (x)∑︁

XR∈X
∑︁

xm∈Sht
XR

wht
XRxxm (x)

,∀x ∈ X. (4)

where xxm (·) is the characteristic function of similar blocks. Weight wht
XR is given by

wht
XR =

⎧⎪⎪⎨⎪⎪⎩
1

σ2NXR
har

, NXR
har ≥ 1

1, otherwise
(5)

where NXR
har is the number of nonzero elements in the sparse representation of hard- thresholding.
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2.2.2. Final estimation

In the final estimation, the original noisy image is Wiener-filtered, mainly based on the basic-
estimate image. This step is primarily applied to restore additional image details and improve the
denoising performance of the algorithm. The parameters in the final estimation are denoted by
superscript “wie”. Similar blocks are grouped in the estimated image and the noise image. The
specific grouping method is the same as that used in basic estimation. We assume a set of two

similar blocks:
⌒

Y
basic
Swie

XR
and Swie

XR .
The contraction coefficient of the Wiener filter is defined by the energy spectrum of the 3D

transformation coefficient of the basic estimation group:

WSwie
XR
=

|︁|︁|︁|︁τwie
3D

(︃
⌒

Y
basic
Swei

XR

)︃|︁|︁|︁|︁2|︁|︁|︁|︁τwie
3D

(︃
⌒

Y
basic
Swei

XR

)︃|︁|︁|︁|︁2 + σ2

. (6)

All the similar blocks in Swie
XR are sorted in the order of similarity, and the 3D group ZSwie

XR
is

constructed with the first Mwie similar blocks in the sort. Noise data are processed using 3D
transformation and Wiener coefficient WSwie

XR
, followed by 3D inverse transformation to obtain the

estimated value of the set of similar image blocks:

⌒

Y
wie
Swie

XR
= τwie−1

3D (WSwie
XR
τwie

3D (ZSwie
XR
)). (7)

The final estimate is obtained as the weighted average of different estimates of the same
reference block:

⌒y
final

(x) =

∑︁
XR∈X

∑︁
xm∈Sht

XR
wwie

XR
⌒

Y
wie,XR
xm (x)∑︁

XR∈X
∑︁

xm∈Swie
XR

wwie
XR xxm (x)

,∀x ∈ X. (8)

where isthepixelestimationofimageblock at position X in the final estimated- image similarity
block group and wwie

XR is the weight of each similar block given by:

wwie
XR = σ

−2 | |WSwie
XR
| |−2

2 . (9)

2.3. Parameter setting

Parameter selection generally affects the performance of an algorithm. Because the correlation
of the 12 channels in the CPFA image imposes certain restrictions on the parameter setting,
we studied the parameter setting of the CPFA-BM3D algorithm comprehensively considering
the algorithm performance, running time, correlation, and so on. The parameters in the basic
estimation step are represented by superscript “ht”, whereas those in the final estimation step are
represented by superscript “wie” as previously mentioned. The parameter set for the basic and
final estimation, respectively, are:

• Nht
1 and Nwie

1 : size of the reference block and similar block;

• Mht and Mwie: maximum number of similar blocks;

• pht and pwie: selected step size of the reference image;

• nht and nwie: search window size;

• τht
match and τwie

match: maximum threshold of the distance between two similar blocks.
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After numerous experiments, we found that several parameters, namely, nht, nwie, τht
match, and

τwie
match, had negligible effect on the result. Therefore, the following parameter values were fixed

and used throughout the study: nht = 39, nwie = 39, τht
match = 2500, and τwie

match = 400.
We tested all 40 scene images in the test set. To quantitatively describe the denoising results,

the PSNR and SSIM (detailed in Section 3.1.2) were used as the two evaluation indices. We
compared five groups of images, including the Stokes vectors (S0, S1, S2), DoLP, and the angle
of polarization (AoP) obtained before and after CPFA image denoising. The results showed
that the parameter setting results for the five groups of compared images in the 40 scenes were
similar. For simplicity, we consider the result of the DoLP image of a plant scene as an example
to illustrate the parameter setting. In addition, when other parameter values are not given, we use
the optimal solution for those parameters.

2.3.1. Influence of Nht
1 and Nwie

1

To maintain the integrity of the color polarization array in the reference block, and considering
the correlation between the color polarization channels, the selection of the reference block
has certain requirements, owing to the unique structure of CPFA image data. When Nht

1 = 2
or Nwie

1 = 2, the denoising effect is very poor because all the channels are not selected in the
reference block, and the collaborative filtering effect is poor because the reference block is very
small. Therefore, Nht

1 , Nwie
1 ≥ 4 were set. For a low noise standard deviation, the reference block

must be relatively small to preserve image details well. However, for a larger noise standard
deviation, the denoising effect is better when the reference block is larger as most of the image
details are lost to noise.

As shown in Table 1, when σ = 30 and the other denoising algorithms have the same
parameters, the reference block size can result in a difference of 1.625 dB in the PSNR and 0.053
dB in the SSIM. Simultaneously, the size of the reference block affects the execution speed of
the algorithm. The smaller the reference block, the faster is the algorithm. For σ ≤ 20 and
Nht

1 = 8, Nwie
1 = 8 and Nwie

1 = 12 are very close. Therefore, we selected Nwie
1 = 8 for its faster

execution time.

Table 1. Influence of Nht
1 and Nwie

1

σ
Nht

1 4 8 12

Nwie
1 4 8 12 4 8 12 4 8 12

5
PSNR/dB 35.522 35.882 35.955 36.383 36.478 36.560 36.495 36.546 36.435

SSIM 0.914 0.919 0.920 0.937 0.938 0.937 0.937 0.937 0.935

10
PSNR/dB 33.952 34.306 34.403 34.845 35.070 35.161 34.960 35.151 34.971

SSIM 0.891 0.897 0.899 0.916 0.919 0.918 0.917 0.918 0.915

20
PSNR/dB 32.182 32.877 33.087 33.258 33.572 33.438 33.353 33.504 33.476

SSIM 0.854 0.869 0.872 0.880 0.890 0.891 0.884 0.889 0.887

30
PSNR/dB 30.874 31.653 31.984 32.001 32.175 32.376 32.101 32.248 32.509

SSIM 0.818 0.844 0.849 0.841 0.859 0.861 0.848 0.857 0.861

2.3.2. Influence of the Mht and Mwie

As shown in Table 2, when the noise is relatively low, the maximum number of similar blocks
has negligible influence on the denoising result, whereas it has a significant influence when the
noise is relatively high. The denoising effect is best when Mht = 32 and Mwie = 64.
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Table 2. Influence of Mht and Mwie .

σ
Mht

1 12 32 64

Nwie
1 12 32 64 12 32 64 12 32 64

5
PSNR/dB 36.574 36.621 36.578 36.585 36.560 36.582 36.671 36.603 36.518

SSIM 0.934 0.936 0.937 0.935 0.936 0.938 0.935 0.937 0.937

10
PSNR/dB 35.168 35.149 35.112 35.105 35.065 35.169 34.980 35.101 35.081

SSIM 0.910 0.914 0.917 0.911 0.914 0.918 0.913 0.917 0.917

20
PSNR/dB 32.817 33.104 33.295 33.006 33.321 33.381 33.184 33.364 33.507

SSIM 0.855 0.869 0.881 0.865 0.874 0.886 0.869 0.881 0.889

30
PSNR/dB 30.856 31.320 31.916 31.296 31.809 31.988 31.462 31.850 32.225

SSIM 0.781 0.811 0.840 0.809 0.828 0.846 0.819 0.838 0.858

2.3.3. Influence of pht and pwie

To increase the processing speed, a circular selection of reference image blocks is performed with
step size p (integer) in rows and columns. For example, with p = 1, the processing is theoretically
nine times faster than with p = 3. In addition, because the final estimation is based on the basic
estimate that assumes no noise or at least low noise, the step-size of the final estimate can be
larger than that of the basic. From Table 3, pht = 3 and pwie = 5 gives the best result.

Table 3. Influence of pht and pwie .

σ
pht 1 3 5

pwie 1 3 5 1 3 5 1 3 5

5
PSNR/dB 36.596 36.555 36.479 36.564 36.573 36.633 36.556 36.511 36.584

SSIM 0.937 0.938 0.937 0.937 0.938 0.938 0.937 0.937 0.937

10
PSNR/dB 35.116 35.151 35.170 35.141 35.080 35.202 35.117 35.181 35.116

SSIM 0.918 0.918 0.918 0.918 0.917 0.919 0.920 0.918 0.918

20
PSNR/dB 33.367 33.546 33.549 33.407 33.447 33.678 33.290 33.590 33.462

SSIM 0.886 0.888 0.890 0.886 0.889 0.887 0.887 0.890 0.886

30
PSNR/dB 32.147 32.255 32.116 32.219 32.071 32.061 32.219 32.107 31.989

SSIM 0.852 0.851 0.852 0.853 0.851 0.851 0.856 0.849 0.848

To increase the processing speed, a circular selection of reference image blocks is performed
with step size p (integer) in rows and columns. For example, with p = 1, the processing is
theoretically nine times faster than with p = 3. In addition, because the final estimation is based
on the basic estimate that assumes no noise or at least low noise, the step-size of the final estimate
can be larger than that of the basic. From Table 3, pht = 3 and pwie = 5 gives the best result.

3. Experimental results and discussion

3.1. Experimental preparation

3.1.1. Simulated and real CPFA images

In this study, the color polarization dataset in Ref. [17], containing 40 carefully calibrated
polarization scenes obtained using a DoT polarization imaging system, was used as the test dataset.
The DoT polarization imaging system changes the wavelength and polarization angle of light by
rotating the spectral filter and polarization filter multiple times for combining different spectral
and polarization filters to obtain the color polarization images. This system can directly obtain



Research Article Vol. 30, No. 12 / 6 Jun 2022 / Optics Express 22116

each pixel including 12 values ((R, G, B) ∗ (0◦, 45◦, 90◦, 135◦)) full-resolution image, mainly used
for verification of the principle of polarization imaging. For each scene, there are four groups of
raw images at polarizations of 0◦, 45◦, 90◦, and 135◦ with the same exposure time. Each group
consists of 100 images acquired continuously under the same situation, averaged to suppress
noise. The resolution of each image is 1024 ×1024 pixel and the depth are 8 bits. To construct
the simulated CPFA images, the images of 12 channels ((R, G, B) ∗ (0◦, 45◦, 90◦, 135◦)) were
down-sampled, and simulated noiseless CPFA images were generated according to the array mode
shown in Fig. 1(b), whose sizes were equal to those of the four color-images. Further, Gaussian
white noise was added to the simulated noiseless CPFA images, which were then denoised
through means filtering, median filtering, Wiener filtering, wavelet threshold filtering [21], the
BM3D algorithm, the DoFP-BM3D algorithm, the algorithm proposed by Qiu et al. (hereafter
called Qiu’s method), and our proposed CPFA-BM3D algorithm. The BM3D algorithm extracts
the images of the 12 channels from the CPFA image data, denoises the images of each channel
separately, and then synthesize the denoised images into CPFA image data. The DoFP-BM3D
algorithm extracts the images of each color channel in the CPFA image to synthesize four (R, G,
G, B) DoFP images, denoising them separately, and then synthesizes the denoised subimages into
CPFA image data. The other denoising algorithms are directly applied to the CPFA image data.
Among them, mean filtering, median filtering, and Wiener filtering adopt a 3*3 window. Wavelet
threshold filtering, the BM3D algorithm, and Qiu’s method employ algorithms with source code
provided in references [21], [18], and [17], respectively. The DoFP-BM3D algorithm adopts the
parameters in Ref. [16]. Finally, the denoising performance was evaluated based on the color
PSNR (average value of the RGB channels), SSIM, and visual comparison.

In addition, we used a Lucid Vision Lab PHX050S-Q color polarization camera to record real
CPFA images. The 2048 × 2448 pixel SONY IMX250MYR CMOS color polarization sensor
was used, where each pixel was 3.45µm × 3.45µm, and the depth was 8-bit.

3.1.2. Evaluation indices

The PSNR is defined as follows:

PSNR = 10 · log10

(︃
MAX2

MSE

)︃
(10)

where MAX represents the maximum value of the image point pixel, and MSE is defined as

MSE =
1

mn

m−1∑︂
i=0

n−1∑︂
j=0

[I(i, j) − K(i, j)]2. (11)

Here, m × n is the size of the image, and I(i, j) and K(i, j) represent the simulated real image
and the denoised image, respectively.

The SSIM measures the image similarity with respect to three aspects: brightness, contrast,
and structure. It is defined as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(µ

2
x + µ

2
y + c2)

. (12)

where µx and µy are the average of x and y, respectively, σ2
x and σ2

y are the variance of x and y,
respectively, σxy is the covariance of x and y, and c1 and c2 are constants.

3.2. Experimental results

In this section, the simulated images are compared in terms of the PSNR, SSIM, and visually,
whereas the real images are only compared visually. Considering the denoising effect and
computational complexity, the algorithm parameters were set as follows: Nht

1 = 8, Nwie
1 = 8, Mht =

32, Mwie = 64, pht = 3, pwie = 5, nht = 39, nwie = 39, τht
match = 2500, and τwie

match = 400.
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3.2.1. Results of the simulated CPFA images

We added Gaussian white noise (σ = 20) to the simulated CPFA images and denoised them
using the different denoising methods mentioned in Section 3.1.1. The edge-aware residual
interpolation [12] color polarization interpolation algorithm was used to interpolate the denoised
simulated CPFA images to generate the color images linearly polarized in four directions. The
sizes of these linearly polarized color images were equal to those of the simulated CPFA images.
The DoLP color image calculated from the original color polarization images with four different
polarization directions in the dataset was used as the reference image. The DoLP color image
calculated from the four interpolated images was compared with the reference image. The
denoising results of the DoLP color images of the “plant” scene in the test set are shown in Fig. 5.

Fig. 5. Simulated CPFA image denoising results: (a) original images, (b) nonuniformity
corrected images, (c) average images, (d) median filtering, (e) Wiener filtering, (f) wavelet
threshold filtering, (g) Qiu’s method, (h) BM3D, (i) DoFP-BM3D, and (j) our method.

Figure 5(a1) displays the DoLP reference image, and Fig. 5(b1) displays the DoLP image ob-
tained by interpolating the simulated CPFA image with Gaussian noise (σ=20). Figures 5(c1)–(j1),
respectively, show the results of mean filtering, median filtering, Wiener filtering, wavelet thresh-
old filtering, Qiu’s method, BM3D algorithm, DoFP-BM3D algorithm, and the DoLP image
obtained by interpolation calculation after denoising the simulated CPFA image using the
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CPFA-BM3D algorithm. Figures 5(a2)–(j2) display the partial enlargement of the green box in
the respective DoLP color image.

As shown in Figs. 5(c1)–(f1), after denoising the simulated CPFA image using mean filtering,
median filtering, Wiener filtering, and wavelet threshold filtering, the noise in the DoLP color
image is partly reduced compared to the DoLP color image with noise (Fig. 5(b1)). However,
some of the areas in the image are distorted because the residual noise in the denoised image is
amplified by the Stokes parameter calculation. In addition, in Figs. 5(c2)–(f2), the texture and
detail information of the leaves and flower-pots are severely corrupted by noise, affecting the
quality of the DoLP color images. Figures 5(g1)–(g2) indicate that when σ is large (σ = 20),
the DoLP color image after denoising by Qiu’s method is filled with noise, and there is no
effective polarization information in the image. From Figs. 5(h1)–(j1), the image quality of the
DoLP color images denoised using the BM3D, DoFP-BM3D, and CPFA-BM3D algorithms
is significantly improved, and the difference in polarization between the leaves and flowerpots
can be observed. However, in Fig. 5(h2), the leaf-edge of the DoLP color image denoised by
the BM3D algorithm has obvious distortion, and checkerboard artifacts can be observed on
the flowerpot. As shown in Fig. 5(i2), although the DoFP-BM3D denoising algorithm reduces
distortion of the leaf-edges, checkerboard artifacts are present in the leaf and flowerpot because
only the polarization information is utilized in this method and color correlation is not applied.
As shown in Fig. 5(j2), compared to the other algorithms, the denoised DoLP color image using
our proposed CPFA-BM3D algorithm removes noise more thoroughly, preserves the edge details
of the leaf and flowerpot in the enlarged region more completely, and reduces the error in the
DoLP color image. Therefore, in terms of the visual effects, the denoising effect of our algorithm
is significantly better than those of the other denoising algorithms.

To verify the denoising effect of different algorithms at different noise levels, Gaussian white
noise with different standard deviations was added to the simulated CPFA image “plant”. The
PSNR and SSIM of the DoLP color image after denoising with different algorithms are plotted in
Fig. 6.
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Fig. 6. PSNR (left) and SSIM (right) under different noise standard deviations.

From Fig. 6, under small standard deviation (σ<10), the difference in the PSNR and SSIM of
the DoLP color image before and after denoising are negligible, and the denoising effect of each
algorithm is almost the same. However, our denoising algorithm is always the best. When the
standard deviation of noise increases, the PSNR and SSIM of the DoLP color image denoised by
our CPFA-BM3D algorithm remain superior to those of the other algorithms. The advantage of
our algorithm over the other algorithms becomes increasingly obvious with the increase in the
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standard deviation of noise. Moreover, the PSNR and SSIM of the image after denoising by our
algorithm are always greater than 32 dB and 0.85, respectively, indicating that our algorithm is
effective for different noise levels, has strong adaptability, and a more obvious suppression effect
on excessive noise.

The polarization information of color-polarized images is generally embodied in S0, S1, S2,
the DoLP, and AoP. Therefore, the performance of the denoising algorithm can be evaluated
using these five types of images. We denoised all 40 simulated CPFA images in the test set
(σ = 20) and averaged the denoising results of the 40 sets of scenes. The PSNR and SSIM values
for the five images are listed in Table 4.

Table 4. Mean PSNR and mean SSIM of the S0, S1, S2, DoLP, and AoP denoising results on the test
set (σ = 20).

Noisy
Images

Average
Images

Median
Filtering

Wiener
Filtering

Wavelet
Threshold
Filtering

Qiu’s BM3D DoFP-
BM3D

Ours

S0
PSNR/dB 21.698 27.610 27.254 28.570 27.115 23.070 29.981 31.706 31.742

SSIM 0.235 0.752 0.652 0.680 0.669 0.299 0.880 0.887 0.915

S1
PSNR/dB 22.394 29.811 28.238 28.950 30.750 23.897 35.680 34.863 38.617

SSIM 0.133 0.465 0.329 0.428 0.561 0.185 0.752 0.663 0.855

S2
PSNR/dB 22.423 29.520 28.117 28.690 30.330 23.957 35.088 34.985 39.496

SSIM 0.134 0.496 0.415 0.466 0.587 0.189 0.789 0.674 0.904

DoLP
PSNR/dB 16.328 24.225 22.346 23.193 27.110 17.220 29.279 29.319 32.269

SSIM 0.128 0.452 0.506 0.402 0.674 0.176 0.779 0.632 0.894

AoP
PSNR/dB 10.402 13.265 12.970 13.098 14.379 12.260 14.912 13.919 16.437

SSIM 0.077 0.215 0.189 0.192 0.204 0.098 0.271 0.286 0.311

Comparing the values of the PSNR and SSIM in Table 4, it is obvious that our algorithm
outperforms the other algorithms. For S1 and S2 images, our algorithm improves the PSNR and
SSIM by approximately 4 dB and 0.2, respectively, compared to the other algorithms. Compared
to the noisy images, the mean value of the PSNR of DoLP color images after denoising can be
increased to 200%, whereas that of AoP color images after denoising can be increased to 160%.
The mean SSIM of DoLP color images is increased to 400%. The above results show that our
algorithm is highly effective in preserving the polarization information of color-polarized images.

3.2.2. Results of real CPFA images

For real CPFA images, correction is first performed for nonuniformity [22], after which the noise
estimation algorithm [23] is used to estimate the noise of sub-images with different polarization
directions and different color channels to obtain the standard deviation of the sub-image noise.
Finally, the image is denoised and interpolated to obtain the computed DoLP color image.

Figure 7(a1) shows the DoLP color image obtained by interpolation calculation of a real
CPFA image, and Fig. 7(b1) shows the result of nonuniformity correction. Figures 7(c1)–(j1)
depict the DoLP color image after denoising a real CPFA image, and Figs. 7(a2)–(j2) show
the partial enlargement of the green box in the respective DoLP color image. In Fig. 7(a1),
there are severe inhomogeneities in the contours of the sculptures and buildings in the image,
and there is considerable noise. As shown in Fig. 7(b1), the image quality after nonuniformity
correction is significantly improved, but considerable noise is present, resulting in no significant
difference in the polarization of the object. Figures 7(c1)–(f1) indicate that the image quality
of the DoLP color image after denoising by mean filtering, median filtering, Wiener filtering,
and wavelet threshold filtering, respectively, is improved. However, some image edge details
are lost, resulting in excessive smoothness. Figures 7(h2) and 7(i2) show that the BM3D and
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DoFP-BM3D algorithms can remove part of the noise, but there is still some noise left in the
image and there is severe loss of polarization information at the railings. Figures 7(g2) and 7(j2)
demonstrate that our CPFA-BM3D algorithm and Qiu’s algorithm have better results overall
than the other algorithms. However, our CPFA-BM3D algorithm is clearly better with respect to
the detailed processing of the sculpture edges compared to Qiu’s algorithm. The polarization
difference of the sculptures in the enlarged region is more obvious. The polarization information
of the DoLP color images is retained, whereas the DoLP images processed by Qiu’s algorithm are
smooth and lack details. Moreover, the denoising results of the simulated and real CPFA images
indicate that Qiu’s algorithm is unsuitable for high-intensity noise. Therefore, our algorithm is
more suitable for real CPFA-image denoising compared to the other algorithms.

Fig. 7. Real CPFA-image denoising results: (a) original images, (b) nonuniformity corrected
images, (c) average images, (d) median filtering, (e) wiener filtering, (f) wavelet threshold
filtering, (g) Qiu’s method, (h) BM3D, (i) DoFP-BM3D, and (j) our method.

4. Conclusion

In this study, we proved the existence of correlation between 12 CPFA image data channels
and proposed a BM3D-based denoising method for CPFA image data (CPFA-BM3D). This
method makes full use of the correlation between different polarization channels and different
color channels to limit the search for similar blocks and groups blocks corresponding to the
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same color channel and polarization channel to reduce chromatic aberration and checkerboard
artifacts. Subsequently, 3D transformation and filtering were performed for similar block groups.
Application of the correlation between different channels adds sparse representation of the real
signals of similar block groups in the transform domain, further improving the filtering effect.
Finally, the filtering results were aggregated, and the CPFA image was restored. The denoising
performance of the proposed algorithm was evaluated using simulated and real CPFA images.
The obtained results demonstrated that the proposed algorithm was superior to the existing
algorithms in terms of the visual effect, PSNR, and SSIM, and that it could retain edge details
and texture information. Moreover, the real CPFA image quality was obviously improved after
processing with the proposed algorithm. The PSNR and SSIM of the DoLP color images obtained
by interpolation of CPFA images processed by the proposed algorithm are increased to 200%
and 400% of their original values, respectively. However, the detailed processing of this method
is not ideal for non-Gaussian noise. Therefore, we intend to study more general CPFA image
denoising methods and CPFA image interpolation denoising methods in the future.
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