
Communications in Nonlinear Science and Numerical Simulation 108 (2022) 106246

a

b

c

U
d

i
r
b
c
W
(
g
t
p
S
a
d

h
1

Contents lists available at ScienceDirect

Communications in Nonlinear Science and
Numerical Simulation

journal homepage: www.elsevier.com/locate/cnsns

Research paper

The effect of coherent coupling nonlinearity onmodulation
instability and roguewave excitation
Heping Jia a,b, Rongcao Yang a,b,∗, Qi Guo c, J.M. Christian d

School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 03006, China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal
niversity, Guangzhou, 510631, China
Joule Physics Laboratory, School of Science, Engineering and Environment, University of Salford, Greater Manchester, M5 4WT, UK

a r t i c l e i n f o

Article history:
Received 29 September 2021
Received in revised form 23 December 2021
Accepted 30 December 2021
Available online 10 January 2022

Keywords:
Modulation instability
Rogue wave
Coherent coupling nonlinearity
Nonlinear Schrödinger equations

a b s t r a c t

We study modulation instability (MI) in both anomalous and normal dispersion regimes
of a coherently coupled system. It is found that there exist three types of MI spectra
with distinct characteristics termed baseband, passband, and zero-baseband based on
the instability analysis of the in-phase and out-of-phase CW solutions. The coherent
coupling nonlinearity is the source of the passband and zero-baseband variants. Guided
by analytical predictions, we investigate numerically the excitation of rogue waves on
weakly perturbed in-phase and out-of-phase continuous wave solutions in the parameter
space where different kinds of MI exist. Simulations provide supporting evidence that
rogue waves can only emerge in regimes where baseband or zero-baseband MI occurs.
Moreover, the peak intensity of rogue waves in the case of baseband MI is greater than
in the zero-baseband case. Finally, a combination of analysis and numerics uncovers the
parameter conditions necessary for the generation of rogue waves.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Rogue waves (RWs) – initially observed as giant waves appearing suddenly on the ocean surface – have become
mportant when describing nonlinear phenomena across many physical contexts [1–7]. Although some uncertainty still
emains on the exact origins of RWs, there is general agreement that modulation instability (MI) and the collision of
reathers are important building blocks [8–12]. Recently, researchers found that MI is a necessary but not sufficient
ondition for RW generation [13–15]. In other words, some kinds of MI are not responsible for the excitation of RWs.
ithin the framework of the Manakov and Fokas–Lenells equations, Baronio et al. [13,14] discovered that baseband MI

defined as the spectral region of MI containing the zero-frequency perturbation as a limiting case) coincides with RW
eneration, while passband MI (the spectral region of MI not including the zero-frequency perturbation) leads only to a
rain of nonlinear oscillations. Also importantly, Zhao et al. [15] found that RWs may emerge from MI with a resonance
erturbation by investigating the connections between instability and several nonlinear waves governed by nonlinear
chrödinger (NLS) equations. Chen et al. [16,17] investigated the emergence of RWs on top of periodic standing waves
nd their relation to the MI properties of those standing waves. Therefore, a detailed study of MI and its link to RWs in
ifferent nonlinear systems is instructive for uncovering the true origin of RWs.
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MI describes the exponential growth of small perturbations on a continuous wave (CW) background. It is related to
any important nonlinear processes in addition to RW formation, such as supercontinuum generation [18] and soliton
eneration [19]. Although linear analysis has limitations that have been corrected using a weakly nonlinear theory of wave
ropagation, it still plays a significant role when assessing MI characteristics [20,21]. Based on linear stability analysis, it
as been found that the MI of freely-propagating waves only occurs in the focusing regime for a nonlinear system governed
y the standard NLS equation [20]. However, in multi-component generalizations, the focusing regime is not a necessary
ondition for MI. For example, MI can exist in the defocusing regime due to the cross-phase modulation between two
ifferent waves [22,23]; subsequent experiments with two polarization modes [24,25] verified that theoretical prediction.
ndeed, MI in multi-component systems is a more complicated problem than in typical single-component systems, and so
hey potentially yield new and rich RW patterns [26–28]. For example, Chan et al. [26] discovered additional MI regimes
nd novel RW structures linked to group-velocity mismatch in coupled multi-wave systems. The novel wave-based
henomena found in coherently coupled systems give rise to additional complexity due to the existence of additional
echanisms for energy transfer between the two constituent waves [29,30].
An obvious question to pose is, what happens to perturbed CW solutions in coherently coupled systems with different

arameters? Furthermore, in which parameter spaces can RWs be excited? And what is the difference between the
roperties of RWs in the various parameter spaces? To answer these questions, in Section 2 we investigate MI in a
oherently coupled nonlinear system by using linear stability analysis, and discuss the influence of coherent coupling
n MI spectra. Based on that analysis, in Section 3 we study numerically the emergence of RWs in parameter spaces
here different kinds of MI are present. We also obtain the parameter conditions for RW generation. Conclusions are
rawn in Section 4.

. Modulation instability in the coherently coupled nonlinear Schrödinger system

A coherently coupled nonlinear system can be described by the following system of two dimensionless NLS-type
quations [29],

i
∂u
∂z

+ β
∂2u
∂t2

+ γ1 |u|2 u + γ2 |v|
2 u + γ3v

2u∗
= 0, (1a)

i
∂v

∂z
+ β

∂2v

∂t2
+ γ1 |v|

2 v + γ2 |u|2 v + γ3u2v∗
= 0. (1b)

ere, u and v are the wave envelopes, γ1 represents the nonlinearity coefficient, while γ2 and γ3 denote incoherent and
oherent coupling coefficients, respectively. In nonlinear fiber models, z and t are the propagation distance and time
espectively; γ1 and γ2 are the self- and cross-phase modulation coefficients, respectively, while γ3 is the four-wave
ixing coefficient (which can be neglected in the case of large birefringence) [30,31]. In the context of Bose–Einstein
ondensates, z and t are, respectively, the time and the space coordinates; γ1 and γ2 are the intra- and inter-component
trengths, while γ3 describes the pair-transition effect caused by the interaction between atoms [32].
System (1) has the CW solution

u01(z, t) = A0 exp [i(αz + ωt)] , (2a)

v01(z, t) = ±A0 exp [i(αz + ωt)] . (2b)

ere, A0, ω and α = (γ1 + γ2 + γ3)A2
0 − βω2 are the amplitude, frequency, and wave number, respectively. These waves

re in-phase or out-of-phase when the ‘‘+’’ or ‘‘−’’ sign, respectively, is adopted in Eq. (2b).
For γ3 = γ1 − γ2, system (1) possesses the more general CW solution

u02(z, t) = A1 exp [i(αz + ωt)] , (3a)

v02(z, t) = A2 exp [i(αz + ωt)] , (3b)

here α = γ1(A2
1 + A2

2) − βω2. Finally, when γ1 = γ2 = γ and γ3 = 0, system (1) reduces to the Manakov equation, for
hich the well-known CW solution is [13,33]

u03(z, t) = A1 exp [i(α1z + ω1t)] , (4a)

v03(z, t) = A2 exp [i(α2z + ω2t)] , (4b)

here αj = γ (A2
1 + A2

2) − βω2
j , j = 1, 2.

The effect of birefringence on the MI of CW solution (3) is studied in Ref. [27], and RWs with ultra-high amplitudes
re presented in Ref. [29]. The link between the type of MI and RWs in the Manakov system is revealed in Ref. [13] by
omparing the existence condition of the RW solution and the parameter spaces where different MI regimes occur. Here,
e are interested in quantifying how novel effects arising from the interactions between parameters γ , γ and γ impact
1 2 3
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their MI spectra and potential for RW generation. Therefore, we consider CW solution (2) and begin by perturbing it
according to

u(z, t) = u01(z, t) [1 + q1(z, t)] , (5a)

v(z, t) = v01(z, t) [1 + q2(z, t)] . (5b)

The functions q1 and q2 represent weak perturbations (i.e., having magnitudes much less than unity) in the two
components. Substituting Eq. (5) into Eq. (1) and ignoring high-order terms of perturbation, one can obtain the following
linearized equations

iq1z + 2iβωq1t + βq1tt + (γ1 + γ3)A2
0q

∗

1 + (γ1 − γ3)A2
0q1 + γ2A2

0q
∗

2 + (γ2 + 2γ3)A2
0q2 = 0, (6a)

iq2z + 2iβωq2t + βq2tt + (γ1 + γ3)A2
0q

∗

2 + (γ1 − γ3)A2
0q2 + γ2A2

0q
∗

1 + (γ2 + 2γ3)A2
0q1 = 0. (6b)

Assuming q1 and q2 have the form [20,22,34,35]

q1(z, t) = q11 exp [i(Kz − Ωt)] + q12 exp [−i(Kz − Ωt)] , (7a)

q2(z, t) = q21 exp [i(Kz − Ωt)] + q22 exp [−i(Kz − Ωt)] , (7b)

where K and Ω are the wave number and frequency, respectively, of those perturbations, we substitute ansatz (7) into
Eq. (6), and then obtain a set of four linear coupled equations which may be written as follows⎡⎢⎢⎢⎢⎣

χ + 2βωΩ − K A2
0(γ1 + γ3) A2

0(γ2 + 2γ3) A2
0γ2

A2
0(γ1 + γ3) χ − 2βωΩ + K A2

0γ2 A2
0(γ2 + 2γ3)

A2
0(γ2 + 2γ3) A2

0γ2 χ + 2βωΩ − K A2
0(γ1 + γ3)

A2
0γ2 A2

0(γ2 + 2γ3) A2
0(γ1 + γ3) χ − 2βωΩ + K

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
q11

q12

q21

q22

⎤⎥⎥⎥⎥⎦ = 0, (8)

here χ = A2
0γ1 − βΩ2

− A2
0γ3.

In order to admit nontrivial solutions, the determinant of the 4 × 4 matrix in Eq. (8) is required to vanish, which
esults in the following dispersion relation

K 4
+ B3K 3

+ B2K 2
+ B1K + B0 = 0, (9)

here

B0 = βΩ2 {
16γ3A6

0

[
γ 2
1 − (γ2 + γ3)2

]
− 4β2Ω2A2

0(γ1 − γ3)(Ω2
− 4ω2) + β3(Ω3

− 4ω2Ω)2

+4βA4
0

[
γ 2
1 Ω2

− γ 2
2 Ω2

+ γ1γ3(8ω2
− 4Ω2) − 2γ2γ3(4ω2

+ Ω2) − γ 2
3 (8ω

2
+ Ω2)

]}
, (10a)

B1 = 8βωΩ
[
4γ3A4

0(γ1 − γ2 − γ3) + 2βΩ2A2
0(γ1 − γ3) − β2Ω2(Ω2

− 4ω2)
]
, (10b)

B2 = 8γ3A4
0(γ1 − γ2 − γ3) + 4βΩ2A2

0(γ1 − γ3) − 2β2Ω2(Ω2
− 12ω2), (10c)

B3 = −8βωΩ. (10d)

ispersion relation (9) possesses two pairs of roots,

K1,2 = 2βωΩ ± |β|

√
∆1, (11a)

K3,4 = 2βωΩ ± |β|

√
∆2, (11b)

here the discriminants are

∆1 = Ω2
(

Ω2
−

2A2
0(γ1 + γ2 + γ3)

β

)
, (12a)

∆2 =

(
Ω2

+
4A2

0γ3

β

)[
Ω2

−
2A2

0(γ1 − γ2 − γ3)
β

]
. (12b)

Since MI arises from a non-vanishing imaginary part of K , the signs of the discriminants in Eqs. (12a) and (12b) are
ssociated with the existence of any instability. CW solution (2) is thus robust against small perturbations when ∆ and
1
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Fig. 1. Schematic plots of MI-A gain as functions of frequency Ω and coherent coupling nonlinearity γ3 in the (a) anomalous and (b) normal
ispersion regimes. (c) The cross-sectional views of (a) for γ3 > −(γ1 + γ2) and (b) for γ3 < −(γ1 + γ2). The cyan solid lines in (a) and (b) represent
2

= 2A2
0(γ1 + γ2 + γ3)/β . The adopted parameters are γ1 = 1, γ2 = −2, (a) β = 1, (b) β = −1.

Fig. 2. Schematic plots of MI-B gain as functions of frequency Ω and coherent coupling nonlinearity γ3 in the (a) anomalous and (b) normal dispersion
regimes for different relations between γ1 and γ2 . The green solid line and green dotted line denote Ω2

= −4A2
0γ3/β and Ω2

= 2A2
0(γ1 −γ2 −γ3)/β ,

espectively. The adopted parameters are γ1 = 1, (a1) β = 1, γ2 = −2, (a2) β = 1, γ2 = 1, (a3) β = 1, γ2 = 2, (b1) β = −1, γ2 = −2, (b2) β = −1,
2 = 1, (b3) β = −1, γ2 = 2.

2 are both positive, and susceptible to perturbations when at least one of them is negative. The MI gain spectrum exhibits
wo pairs of spectral sidebands when ∆1 and ∆2 are both negative. Here, we define MI-A and MI-B for parameter regimes
here ∆1 < 0 and ∆2 < 0, respectively. Obviously, the MI characteristics of the CW solution are determined by both
I-A and MI-B. It is also worth noting that if pairs of perturbation amplitudes are the same, i.e. q11 = q21 and q12 = q22

n Eq. (7), then dispersion relation (9) will reduce to a quadratic equation whose two roots are given in Eq. (11a). In that
ase, MI is determined solely by ∆1 [cf. Eq. (12a)].
One may quantify MI by way of dispersion relation (9). For definiteness in the following analysis, we set β = 1

anomalous dispersion) or β = −1 (normal dispersion). Schematic plots of the MI-A gain GA = 2Im(K1,2) versus the
requency Ω and the coherent coupling nonlinearity γ3 are shown in Fig. 1. It can be seen that MI-A occurs when γ3
xceeds the threshold value γth1 = −(γ1 + γ2) for anomalous dispersion [Fig. 1(a)], but it occurs when γ3 is less than the
hreshold value γth1 for normal dispersion [Fig. 1(b)]. In both regimes, MI-A behaves exactly like baseband MI [Fig. 1(c)].

Fig. 2 depicts the dependence of the MI-B gain GB = 2Im(K3,4) on Ω and γ3 for different relations between γ1 and γ2.
here is again a threshold value, γth2 = sgn[β] · max{sgn[β] · (γ1 − γ2), 0}; MI-B occurs when γ3 < γth2 for anomalous
ispersion, and when γ3 > γth2 for normal dispersion. It is worth noting that there is a stable critical point γ3c = γ2−γ1 for
1 > γ2 in the anomalous dispersion regime, and for γ1 < γ2 in the normal dispersion regime. Fig. 3 shows cross-sectional
iews of the MI-B gain spectra in Fig. 2 for different γ3. It is evident that MI-B behaves rather differently fromMI-A because
wo other kinds of spectral structure appear in addition to the familiar baseband contribution (blue solid lines). One kind
black dash-dot lines) behaves exactly like passband MI [13,14]. The characteristics of the other (red dotted lines) are
ualitatively different from those of both baseband and passband MI; this second kind is referred to as zero-baseband MI.
4
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Fig. 3. The corresponding cross-sectional views of the MI-B gain spectra in Fig. 2(a1–a3) and (b1–b3) at different γ3 .

Fig. 4. Division of the [γ1 γ2] plane in the (a) anomalous and (b) normal dispersion regimes. Zones 1 to 9 for (a) and (b) are specified in the text.

As mentioned above, the instability of the CW solution is determined by both MI-A and MI-B. By comparing the values
of γ3 corresponding to the boundaries between different MI regimes in Figs. 1 and 2, the [γ1 γ2] plane in both dispersion
egimes can be divided into nine zones. As shown in Fig. 4(a), the zones for anomalous dispersion are labeled Zone 1
2 < γ1 ≤ 0, Zone 2 0 < γ1 ≤ −γ2, Zone 3 0 ≤ −γ2 < γ1, Zone 4 0 < γ2 < γ1, Zone 5 γ1 = γ2 > 0, Zone 6 0 < γ1 < γ2,
one 7 −γ2 < γ1 ≤ 0, Zone 8 γ1 < γ2 & γ1 ≤ −γ2, and Zone 9 γ1 = γ2 ≤ 0. Similarly, the nine zones for normal
ispersion are labeled Zone 1 γ2 < γ1 ≤ 0, Zone 2 0 < γ1 ≤ −γ2, Zone 3 γ1 > −γ2 & γ1 > γ2, Zone 4 γ1 = γ2 > 0, Zone
0 < γ1 < γ2, Zone 6 −γ2 < γ1 ≤ 0, Zone 7 0 < γ2 < −γ1, Zone 8 γ1 < γ2 ≤ 0, and Zone 9 γ1 = γ2 ≤ 0, as shown in
ig. 4(b). The dependence of MI gain on Ω and γ3 in the different zones for anomalous and normal dispersion regions is
hown in Figs. 5 and 6, respectively. It can be seen that if MI occurs, only the baseband contribution is present in both
nomalous and normal regimes when the coherent coupling nonlinearity is absent (γ3 = 0). Therefore, the existence
f passband and zero-baseband contributions is due to the presence of γ3 alone. More detailed analysis reveals that for
nomalous dispersion, the introduction of γ < 0 may lead to passband and zero-baseband MI, while γ > 0 can lead
3 3
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Fig. 5. Schematic plots of anomalous-dispersion MI gain as functions of frequency Ω and coherent coupling nonlinearity γ3 for different parameter
paces located in zones 1 to 9. The adopted parameters are β = 1, (a) γ1 = −1, γ2 = −2, (b) γ1 = 1, γ2 = −2, (c) γ1 = 2, γ2 = −1, (d) γ1 = 2,
2 = 1, (e) γ1 = 1, γ2 = 1, (f) γ1 = 1, γ2 = 2, (g) γ1 = −1, γ2 = 2, (h) γ1 = −2, γ2 = 1, (i) γ1 = −1, γ2 = −1.

nly to zero-baseband MI (see Fig. 5). However, for normal dispersion, the introduction of γ3 < 0 can lead only to zero-
aseband MI, while γ3 > 0 may lead to passband and zero-baseband MI (see Fig. 6). It should be noted that the above
esults are based on the analysis of CW solution (2).

. RW excitation by localized perturbation in different parameter spaces

Having been fairly exhaustive exploring MI in Section 2, it is clear that there are many new possible avenues for
otential RW excitation. Using the split-step Fourier method, we now perform simulations in different parameters spaces
o solve perturbed initial-value problems of the form

u(0, t) = u01(0, t) [1 + g1(t)] , (13a)

v(0, t) = v01(0, t) [1 + g2(t)] , (13b)

here gi(t) (i = 1, 2) denotes local disturbances at z = 0. Three common forms for perturbations were tested:
aussian gi(t) = εi exp[−(t − t0i)2/wi], super-Gaussian gi(t) = εi exp[−(t − t0i)4/wi], and hyperbolic secant gi(t) =

isech[(t − t0i)/wi] [36,37], where in each case the real constants εi, wi, and t0i determine the initial amplitudes, widths,
nd positions, respectively. The simulations were found to be largely independent of whatever form was used, which is
finding consistent with Ref. [36]. Hence, for illustrative purposes, only a selection of results for Gaussian perturbations

s shown here.
We begin by considering the evolution of an in-phase wave when the two initial perturbations differ from one another,

.e. g1(t) ̸= g2(t). Fig. 7(a)–(d) present typical numerical solutions from the various parameter spaces in Fig. 5(a), where
aseband MI, modulation stability, zero-baseband MI and passband MI occur, respectively. These simulations show that
RW (highlighted by a red dashed ellipse) can be excited in the parameter spaces for baseband and zero-baseband MI

Fig. 7(a) and (c)]. However, the solution splits into sets of pulses in the parameter spaces for modulation stability and
6
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Fig. 6. Schematic plots of the normal-dispersion MI gain as functions of frequency Ω and coherent coupling nonlinearity γ3 for different parameter
paces located in zones 1 to 9. The adopted parameters are β = −1, (a), γ1 = −1, γ2 = −2, (b) γ1 = 1, γ2 = −2, (c) γ1 = 2, γ2 = −1, (d) γ1 = 1,
2 = 1, (e) γ1 = 1, γ2 = 2, (f) γ1 = −1, γ2 = 2, (g) γ1 = −2, γ2 = 1, (h) γ1 = −2, γ2 = −1, (i) γ1 = −1, γ2 = −1.

assband MI [Fig. 7(b) and (d)]. Moreover, the maximal intensity of the RW in the case of zero-baseband MI is somewhat
maller than that in the case of baseband MI [compare Fig. 7(c) and (a)].
We have also performed extensive simulations of the in-phase CW solution in different parameter spaces of Figs. 5(b-i)

nd 6, along with the corresponding out-of-phase CW solution. The results were always consistent with those presented
n Fig. 7 though, for brevity, they are omitted here. The key physical prediction to emerge is that a RW can be excited
rom both in-phase and out-of-phase CW solutions in parameter spaces where baseband or zero-baseband MI occur. In
ontrast, perturbations to an in-phase or out-of-phase CW solution tend to cause a splitting into pulses in parameter
paces where passband MI or modulation stability occurs.
Combining the analysis of MI with supporting simulations, it can be inferred that when MI occurs, a RW can

e excited if γ3 > γth3 = min [0, γ1 − γ2, −(γ1 + γ2)] in the anomalous dispersion regime, or if γ3 < γth4 =

ax [0, γ1 − γ2, −(γ1 + γ2)] in the normal dispersion regime. Some special cases of these results have been reported
lsewhere. Based on system (1) with β = 1/2, γ1 = γ3 = σ and γ2 = 2σ , Ling et al. [38] obtained the RW solution
or σ = 1 but reported soliton solutions only for σ = −1; Zhang et al. [39] found that MI occurs when σ = 1 and
hat modulation stability appears for σ = −1. In our work, the parameter space with σ = 1 corresponds to the red
ine in Fig. 5(f), where baseband MI appears; the parameter space with σ = −1 corresponds to the stable critical point
hown by red line in Fig. 5(a). Sun et al. [40] took the in-phase CW solutions as a seed and obtained RWs via the Darboux
ransformation of system (1) with β = 1, γ1 = 2, γ2 = 4, and γ3 = −2. The parameter space in Ref. [40] corresponds to
he magenta line in Fig. 5(f), where baseband MI occurs. Obviously, the conclusions presented here are more general.

Finally, we consider the evolution of CW solutions subject to identical initial perturbations, i.e. g1(t) = g2(t). As
entioned in Section 2, when the perturbations in the two components are the same, dispersion relation (9) possesses
nly one pair of roots K1,2, so that MI is completely determined by MI-A. In such a scenario, only baseband MI exists.
ig. 8(a)–(d), respectively, show a set of simulations for perturbed in-phase CW solutions under the condition g1(t) = g2(t)
or the different parameter spaces of Fig. 5(a). It can be seen that a RW (highlighted by the red dashed ellipse) can be
xcited from a perturbed in-phase CW solution in the parameter space where baseband MI occurs, while the same solution
plits into smaller pulses in other parameter spaces (which is agreement with the analysis in Section 2).
7
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Fig. 7. Typical numerical results for the in-phase CW solution with Gaussian perturbations for different parameter spaces in Fig. 5(a) when g1(t)̸=g2(t).
γ1 , γ2 , and γ3 are located in the parameter spaces of Fig. 5(a), where (a) baseband MI, (b) modulation stability, (c) zero-baseband, and (d) passband
MI occur. The other parameters are ε1 = 0.01, w1 = 0.5, t01 = 0, ε2 = 0. A RW is highlighted by a red dashed ellipse in (a) and (c).

4. Conclusions

In the framework of coherently coupled system (1), we have mapped out the MI characteristics of the in-phase and
out-of-phase CW solutions in both anomalous and normal dispersion regimes. It has been found that when the initial
perturbations in the two components are identical, only baseband MI can occur. However, when the initial perturbations
8
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Fig. 8. Typical numerical results for the in-phase CW solution with Gaussian perturbations for different parameter spaces in Fig. 5(a) when
g1(t) = g2(t). The adopted parameters in (a–d) are the same as those in Fig. 7(a–d), respectively, except for ε2 = 0.01, w2 = 0.5, and t02 = 0. A RW
s highlighted by a red dashed ellipse in (a), and only the u component is presented (the v component shows very similar behavior).

re different (thereby introducing a symmetry-breaking element), there appears a richer and much more intricate spectral
tructure: baseband, passband, and zero-baseband MI. Moreover, one may attribute coherent coupling nonlinearity
irectly to the existence of passband and zero-baseband MI phenomena.
Based on the analysis of dispersion relation (9), we have addressed numerically the possibility of exciting RWs from in-

hase and out-of-phase CW solutions (subject to Gaussian perturbations) in those parameter spaces where three types of
I are supported. Simulations have revealed that RWs emerge only when baseband or zero-baseband MI occur. Moreover,

he peak intensities of RWs in the zero-baseband case are typically less than those in the baseband case.
By combining analysis and numerics, we have found that when MI is present, RWs can be generated by perturbing

ither in-phase or out-of-phase CW solutions if γ3 exceeds the threshold γth3 in the anomalous dispersion regime, or if γ3
alls below the threshold γth4 in normal dispersion regime. Our results, thus, extend over the entire parameter space of
ystem (1) and, in that way, go beyond what has been published to date [27,39]. Moreover, the thresholds reported here
re key research findings that are essential for identifying regions of parameter space capable of supporting RW formation
ithout needing to solve system (1) directly.
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